FINAL

URBAN WATER MANAGEMENT PLAN 2016 UPDATE
AUGUST 2016

Carpinteria Valley Water District

Board of Directors
Bob McDonald, General Manager
Alex Keuper, Administrative Analyst
Rhonda Gutierrez, Engineering Technician/Water Conservation Specialist

Consultant

Brad Milner, President
Milner-Villa Consulting
1746 S. Victoria Ave. #F126
Ventura, CA, 93003
805-551-3294
www.milnervilla.com
TABLE OF CONTENTS

Section ES: Executive Summary

- ES1 Introduction ... 9
- ES2 System Description ... 10
- ES3 Water Demands ... 12
- ES4 Water Supplies .. 15
- ES5 Water Supply Reliability ... 23
- ES6 Water Shortage Contingency Planning ... 29
- ES7 Demand Management Measures ... 31

Section 1: Introduction

- 1.1 Objectives .. 33
- 1.2 Format of Urban Water Management Plan .. 33
- 1.3 Urban Water Management Planning Act .. 33
 - 1.3.1 Summary ... 33
 - 1.3.2 Introduction .. 34
 - 1.3.3 Recent Changes to UWMP Act ... 37
- 1.4 District Compliance with UWMP Act .. 38
- 1.5 Public Review, Adoption, and Submittal ... 38
- 1.6 Implementation .. 39
- 1.7 Authorization .. 39
- 1.8 Contact Information ... 39

Section 2: System Description

- 2.1 UWMP Requirements ... 40
- 2.2 Location of District ... 40
- 2.3 History of District .. 40
- 2.4 District Facilities .. 43
- 2.5 Climate ... 43
- 2.6 Demographic Factors .. 45
 - 2.6.1 Land Use .. 45
 - 2.6.2 Population ... 47
- 2.7 District Operations .. 48
 - 2.7.1 Operating Rules and Regulations ... 48
 - 2.7.2 Water Delivery Measurements .. 48
- 2.7.1 Water Rate Schedules and Billing .. 48

Section 3: System Demands

- 3.1 UWMP Requirements .. 50
- 3.2 Current Demands ... 50
 - 3.2.1 Residential Demands ... 51
3.2.2 Commercial Demands ...51
3.2.3 Industrial Demands ...51
3.2.4 Institutional/Governmental Demands ..51
3.2.5 Agricultural Demands ...51
3.2.6 Water Losses ..52
3.2.7 Current Demands for Low Income Households53

3.3 Future Water Demands ..53
3.3.1 Residential Demands ..53
3.3.2 Commercial Demands ...53
3.3.3 Industrial Demands ...53
3.3.4 Institutional/Governmental Demands54
3.3.5 Agricultural Demands ...54
3.3.6 Water Losses ..54
3.3.7 Future Demands for Low Income Households55

3.4 Water Conservation Act of 2009 ..55
3.4.1 Baseline Water Use ...55
3.4.2 Water Use Targets ..56
3.4.3 Data Reporting ...56
3.4.4 District Compliance Summary ..58

Section 4: System Supplies ...59
4.1 UWMP Requirements ...59
4.2 Current Water Supplies ...60
4.2.1 Local Groundwater ...61
4.2.2 Cachuma Project ..68
4.2.3 State Water Project ..77
4.2.4 Additional Water Supply Projects ..77
4.2.5 Sales, Transfers, and Exchanges ...78
4.3 Water Quality of Existing Water Supplies78
4.3.1 Water Quality Concerns ...78
4.3.2 Groundwater ..79
4.3.3 Surface Water (Cachuma and SWP Supplies)79
4.4 Future Water Supplies ...79
4.4.1 Local Groundwater ...81
4.4.2 Cachuma Project ..81
4.4.3 State Water Project ..83
4.4.4 Carpinteria Groundwater Bank ...83
4.4.5 Desalinated Water ...85
4.4.6 Sales, Transfers, and Exchange Opportunities85
4.4.7 Recycled Water ..86
4.5 Water Quality of Future Water Supplies89
4.6 Climate Change ..89
4.6.1 Introduction ...89
4.6.2 Potential Impacts of Climate Change ...89
4.6.3 Potential Effects of Climate Change on Water Demand90
4.6.4 Mitigation and Adaptation ..91
4.6.5 Local Strategies ...92

Section 5: Water Supply Reliability ... 93
5.1 UWMP Requirements ..93
5.2 Reliability ...93
5.3 Basis of Water-Year Data ...93
5.4 Reliability Assessment ..94
5.4.1 Normal Water-Year Assessment ..94
5.4.2 Single Dry Water-Year Assessment ...96
5.4.3 Multiple Dry Water-Year Assessment ...97
5.5 Minimum Three Year Supply ...99

Section 6: Water Shortage Contingency Planning ... 100
6.1 UWMP Requirements ..100
6.2 Prohibitions, Consumption Reduction Methods, and Penalties100
6.2.1 Mandatory Prohibitions on Water Wasting ..100
6.2.2 Consumption Reduction Methods ...101
6.2.3 Water Allotment Methods ...101
6.2.4 Excessive Use Penalties ...102
6.3 Emergency Response Plan ...102
6.4 Water Shortage Contingency Planning ..103
6.4.1 Water Shortage Contingency Ordinance/Resolution104
6.4.2 Stages of Action and Reduction Goals ..104
6.4.3 Priority by Use ..104
6.4.4 Health and Safety Requirements ..105
6.4.5 Water Shortage Stages and Triggering Mechanisms105
6.4.6 Current Stage ...107
6.5 Revenue and Expenditure Impacts and Measures to Overcome Impacts ...107

Section 7: Demand Management Measures ... 108
7.1 UWMP Requirements ...108
7.2 Introduction ...108
7.3 Demand Management Measures ..109
7.3.1 Water Waste Prevention Ordinances ..109
7.3.2 Metering ...109
7.3.3 Conservation Pricing ...110
7.3.4 Public Education and Outreach ..110
7.3.5 Water Loss Control ... 111
7.3.6 Conservation Program Coordination and Staffing 112
7.3.7 Other Demand Management Programs 112
7.3.8 Agricultural Programs .. 119

References .. 121
List of Tables

ES-1 District Water Demands for 2015 ... 12
ES-2 Projected District Total Water Demands 2020-2040 14
ES-3 District Delivered Water Supplies for 2015 .. 16
ES-4 Carpinteria Groundwater Basin Total Pumping for 2011-2015 17
ES-5 District Surface Water Deliveries for 2011-2015 .. 18
ES-6 Projected Maximum Available Water Supplies 2020-2040 21
ES-7 Projected Long-Term Available Water Supplies 2020-2040 22
ES-8 Projected Normal Water-Year Supply and Demand 2020-2040 25
ES-9 Projected Single Dry Water-Year Supply and Demand 2020-2040 26
ES-10 Projected Multiple Dry Water-Years Supply and Demand 2020-2040 27
ES-11 Estimated Three Year Minimum Water Supply 2016-2018 28
ES-12 Water Shortage Stages and Goals ... 30
ES-13 Water Shortage Stages and Triggering Mechanisms 31
2-1 Local Climate Summary .. 45
2-2 Acres of Agriculture in the District .. 47
2-3 Historical and Projected District Population ... 48
3-1 District Water Demands for 2015 ... 52
3-2 Projected District Total Water Demands 2020-2040 54
4-1 District Delivered Water Supplies for 2015 ... 61
4-2 District Groundwater Facilities .. 67
4-3 Carpinteria Groundwater Basin Total Pumping 2011-2015 68
4-4 District Surface Water Deliveries 2011-2015 .. 69
4-5 Projected Maximum Available Water Supplies 2020-2040 80
4-6 Projected Long-Term Available Water Supplies 2020-2040 82
4-7 Projected Recycled Water Production 2020-2040 ... 88
4-8 Projected Recycled Water Demand 2020-2040 .. 88
5-1 Basis of Water-Year Data .. 94
5-2 Projected Normal Water-Year Supply and Demand 2020-2040 95
5-3 Projected Single Dry Water-Year Supply and Demand 2020-2040 97
5-4 Projected Multiple Dry Water-Year Supply and Demand 2020-2040 98
6-1 Water Allocation Method By Customer Type .. 101
6-2 Water Use Restriction (Allotments) ... 102
6-3 Water Shortage Stages and Goals ... 105
6-4 Water Shortage Stages and Triggering Mechanisms 106
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Vicinity Map</td>
<td>41</td>
</tr>
<tr>
<td>2-2</td>
<td>District Boundary</td>
<td>42</td>
</tr>
<tr>
<td>2-3</td>
<td>District Facilities</td>
<td>44</td>
</tr>
<tr>
<td>2-4</td>
<td>District Land Use Map</td>
<td>46</td>
</tr>
<tr>
<td>3-1</td>
<td>Central Coast Hydrologic Basin</td>
<td>57</td>
</tr>
<tr>
<td>4-1</td>
<td>Regional Groundwater Basins</td>
<td>63</td>
</tr>
<tr>
<td>4-2</td>
<td>Carpinteria Groundwater Basin</td>
<td>64</td>
</tr>
<tr>
<td>4-3</td>
<td>Confined and Recharge Areas</td>
<td>65</td>
</tr>
<tr>
<td>4-4</td>
<td>Cross-Section of Carpinteria Basin</td>
<td>66</td>
</tr>
<tr>
<td>4-5</td>
<td>Photo - Lake Cachuma, Santa Barbara County</td>
<td>70</td>
</tr>
<tr>
<td>4-6</td>
<td>Photo - Bradbury Dam, Lake Cachuma, Santa Barbara County</td>
<td>71</td>
</tr>
<tr>
<td>4-7</td>
<td>State Water Project Facilities</td>
<td>74</td>
</tr>
<tr>
<td>4-8</td>
<td>CCWA Facilities</td>
<td>75</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Definitions for Selected Terminology</td>
</tr>
<tr>
<td>B</td>
<td>Urban Water Management Planning Act</td>
</tr>
<tr>
<td>C</td>
<td>District Notifications and Resolutions for UWMP</td>
</tr>
<tr>
<td>D</td>
<td>DWR UWMP Tables</td>
</tr>
<tr>
<td>E</td>
<td>DWR SBX 7-7 Tables</td>
</tr>
<tr>
<td>F</td>
<td>Groundwater Management Plan</td>
</tr>
<tr>
<td>G</td>
<td>Consumer Confidence Report and Water Quality Data</td>
</tr>
<tr>
<td>H</td>
<td>Selected District Resolutions/Ordinances</td>
</tr>
<tr>
<td>I</td>
<td>Emergency Response Plan</td>
</tr>
<tr>
<td>J</td>
<td>BMP Reports for CUWCC</td>
</tr>
<tr>
<td>K</td>
<td>Water Rates and Charges</td>
</tr>
<tr>
<td>L</td>
<td>Examples of District's Public Education Materials</td>
</tr>
<tr>
<td>M</td>
<td>UWMP Checklist</td>
</tr>
<tr>
<td>N</td>
<td>District Water Audit Summary</td>
</tr>
<tr>
<td>O</td>
<td>Additional Analyses of Multiple Dry Water-Years Supply and Demand</td>
</tr>
</tbody>
</table>
List of Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>AF</td>
<td>acre-foot</td>
</tr>
<tr>
<td>AFY</td>
<td>acre-foot per year</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>CADDW</td>
<td>California Division of Drinking Water</td>
</tr>
<tr>
<td>CADWR</td>
<td>State of California Department of Water Resources</td>
</tr>
<tr>
<td>CCR</td>
<td>Consumer Confidence Report</td>
</tr>
<tr>
<td>CCWA</td>
<td>Central Coast Water Authority</td>
</tr>
<tr>
<td>cf</td>
<td>cubic feet</td>
</tr>
<tr>
<td>cfs</td>
<td>cubic feet per second</td>
</tr>
<tr>
<td>CII</td>
<td>Commercial, Industrial, Institutional (water use sectors)</td>
</tr>
<tr>
<td>CIMIS</td>
<td>California Irrigation Management Information System</td>
</tr>
<tr>
<td>COMB</td>
<td>Cachuma Operations and Maintenance Board</td>
</tr>
<tr>
<td>CSD</td>
<td>Carpinteria Sanitary District</td>
</tr>
<tr>
<td>CVWD</td>
<td>Carpinteria Valley Water District (or District)</td>
</tr>
<tr>
<td>CWC</td>
<td>California Water Code</td>
</tr>
<tr>
<td>DMM</td>
<td>demand management measure</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>gpcd</td>
<td>gallons per capita per day</td>
</tr>
<tr>
<td>gpd</td>
<td>gallons per day</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>HCF</td>
<td>hundred cubic feet</td>
</tr>
<tr>
<td>MGD</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SB</td>
<td>Senate Bill</td>
</tr>
<tr>
<td>SDWA</td>
<td>Safe Drinking Water Act</td>
</tr>
<tr>
<td>SGMA</td>
<td>Sustainable Groundwater Management Act</td>
</tr>
<tr>
<td>SWP</td>
<td>State Water Project</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>USBR</td>
<td>United States Bureau of Reclamation</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UWMP</td>
<td>Urban Water Management Plan</td>
</tr>
<tr>
<td>WTP</td>
<td>water treatment plant</td>
</tr>
<tr>
<td>WWTP</td>
<td>wastewater treatment plant</td>
</tr>
<tr>
<td>WY</td>
<td>water-year</td>
</tr>
</tbody>
</table>

Definitions for selected terminology are provided in Appendix A.
ES1 - INTRODUCTION

The Carpinteria Valley Water District (CVWD or District) is pleased to release this Urban Water Management Plan (UWMP) 2016 Update. The District is required to prepare the UWMP as per requirements by the California Department of Water Resources. The UWMP elements comply with the requirements of California Water Code (Section 10610-10656).

ES1.1 Urban Water Management Plan

Urban water suppliers in California serving more than 3,000 customers or providing more than 3,000 AF of water annually must prepare an UWMP to promote water demand management and efficient water use. This UWMP provides planning information on the reliability and future availability of the District’s water supply. This UWMP is a public statement of the goals, objectives, and strategies needed to maintain a reliable water supply for the District’s customers. It is important to understand that this UWMP should be viewed as a long-term, general planning document, rather than as policy for supply and demand management.

Primary objectives of this UWMP include the following:

- Summarize a description of the CVWD water system
- Quantify anticipated water demands over a 20-year period
- Identify and quantify water supplies over a 20-year period
- Summarize reliability of water supplies for existing and future demands, in normal, dry, and multiple dry years, over a 20-year period
- Summarize water conservation and demand management measures.

This UWMP provides information on present and future water supplies and demands, and provides an assessment of the District’s water resource needs. It serves as a long-range planning document for the District’s water supply. Droughts, limited supplies, environmental demands - all of these factors must be taken into consideration to provide a safe and reliable water supply for the District’s service area. The intention of the UWMP is to demonstrate the District’s water supply reliability over the next 25 years, in 5-year increments. The plan addresses the District’s water system and includes a description of available water supply sources, consequences of historical and projected water use, and a comparison of water supply to water demands during a normal water-year, single dry water-year, and multiple dry water-years. It also describes the District’s efforts to implement water conservation measures and water efficient uses for urban and agricultural water supplies. The UWMP is the District’s commitment to a long-term plan to ensure water reliability into the future. Additional details regarding the UWMP requirements are provided in Section 1.
ES1.2 Public Notification

The District notified applicable local agencies and organizations regarding preparation of the UWMP and planned public meeting dates and times. The District encourages representatives from those organizations and the public to attend public meetings. The District provided notification via newspaper and via District website: http://www.cvwd.net/

The District invited comments from organizations and the public as well. The District held a public hearing on July 27, 2016 and on August 24, 2016 in City of Carpinteria City Council Meeting Room. The Board of Directors adopted the UWMP following the August public hearing. A copy of the Board Resolution is provided in Appendix C. The District will submit the adopted UWMP to the California Department of Water Resources. A copy of the UWMP checklist is provided in Appendix M.

ES2 – SYSTEM DESCRIPTION

ES2.1 Location of District

The District is located on the coast of California 80 miles north of Los Angeles and 12 miles southeast of Santa Barbara. The District’s service area encompasses an area extending along the south coast of the County of Santa Barbara. The District’s service area contains approximately 11,098 acres (17.3 square miles).

ES2.2 District Facilities

The District was established in 1941. The District owns and operates five (5) municipal wells with a combined capacity to produce approximately 3.98 million gallons per day (MGD). These wells are located central to the suburban section of Carpinteria. The District constructed a new well, Headquarters Well, and a replacement well for El Carro in the last 10 years. Both of these wells have the capability to extract as well as inject water. These wells will help meet the peak demands and provide some redundancy in the groundwater supply reliability. Additional details regarding District groundwater extractions are provided in Section 4.

The District owns and operates three (3) potable water reservoirs with a combined storage capacity of approximately 10.68 acre-feet (AF). These reservoirs include Shepard Mesa (0.15 AF), Foothill (9 AF), and Gobernador (1.53 AF). The District owns and operates a total of 78.14 miles of distribution pipelines. These pipelines include concrete (51% of total), steel (36%), and other materials (13%).

ES2.3 Climate

Climate within the District’s service area is Mediterranean-like in character. Summers are usually dry with generally mild temperatures and the winters are cool and have light to moderate quantities of precipitation (predominantly in the form of rainfall) with cool temperatures. Annual variation in climate conditions is minimal within the District.

Water from the Cachuma Project is collected from the Santa Ynez mountain watershed, which is subject to its own local climatic variations. Cachuma Project water, stored in Lake Cachuma, is a
major source of surface water for the District. Rainfall in the Santa Ynez watershed is greater than that of local patterns due to the orographic effect created by the local mountains and the offshore winds.

Average daily maximum air temperature varies between 64.9 and 77.1 degrees Fahrenheit with an average of 70.8. (WRCC, 2015) Annual rainfall for the area is 18.83 inches. Annual average evapotranspiration (ETo) for the area is 43.7 inches. (CADWR, 2015) Additional details regarding climate within the District are provided in Section 2.

ES2.4 Land Use

Land use within the District includes agriculture (3,167 acres), residential, and commercial properties. Much of the land within the City of Carpinteria limits is used for residential or commercial use along with industrial and manufacturing. Almost all the agricultural land lies outside the City limits. Land use within the District is regulated by the City within its boundaries, and by the County of Santa Barbara for the unincorporated area of the District. Agricultural customers include approximately 3,167 acres of irrigated crops including avocados, lemons, fruit trees, and nursery operations.

ES2.5 Population

Water service is provided to a current population within the District: service area of approximately 15,600 and a total of 4,307 service connections. Population estimates were generated from the present to 2040 and include areas outside of the City limits but within the District service area. The District estimated the population for the period 2015 to 2040 using the 2010 Census data, aerial photography, current meter connections, District surveys, and estimated population growth rate of 0.2 percent. Population growth within the District is anticipated to be 800 persons over the next 25 years (approximately 0.2 percent per year). Population is anticipated to be 16,400 by 2040. Additional details regarding population within the District are provided in Section 2.

ES2.6 District Operations

The District has inclining block water rates where the cost per unit of water increases with the quantity of water used for all accounts. District water rates are based on cost of providing services to all accounts. The District’s water rates provide an incentive for customers to conserve water. Customers are billed monthly for 100 percent of the volume of water used. Meter fees (2015-2016, see copy in Appendix E) range from $37.88 per month (5/8-inch) to $1,262.50 (6-inch). The commodity rate for agricultural customers is $1.92 per one hundred cubic feet (HCF) to $2.94 per HCF depending on usage and elevation of the property. The commodity rate for all residential, commercial, and industrial customers is $3.40 per HCF to $6.94 per HCF depending on usage and elevation of the property. In addition, the District has an additional fee for capital improvement program ($16.50 to $275 per month) and drought surcharge ($2.40 to $40.00 per month). The District has the legal authority to evaluate and set rates for its customers.
ES3 – WATER DEMANDS

ES3.1 Current Demands

Currently, the District serves water to 3,217 single-family residential accounts, 348 multiple-family accounts, 216 commercial accounts, 58 industrial accounts, 62 government/institutional accounts, and 406 agricultural accounts. All of the District’s customers are metered accounts and billed monthly. According to the District, total water demand in 2015 is 4,143 acre-feet (AF). Details regarding the District’s 2015 water demands are provided in Table ES-1. The District noted that the 2010 total water demand is 3,718 AF and 2005 total water demand is 3,962 AF. The 2015 demands are 425 AF (11 percent) higher than the 2010 demands and 181 AF (4.4 percent) higher than the 2005 demands. Agriculture demands accounted for highest category by volume used within the District at 2,130 AF (51.4 percent) in 2015. Municipal customers (including residential, commercial, industrial, institutional, and landscape uses) accounted for nearly 1,620 AF (39 percent) of the District’s 2015 total water demand. A copy of the District’s water audit summary for fiscal year 2014-2015 is provided in Appendix N. Additional details regarding current water demands are provided in Section 3.

TABLE ES-1

<table>
<thead>
<tr>
<th>Customer Classification</th>
<th>Water Demand (AF) (1)</th>
<th>Demand by Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Residential</td>
<td>746</td>
<td>18.0</td>
</tr>
<tr>
<td>Multi-Family Residential</td>
<td>415</td>
<td>10.0</td>
</tr>
<tr>
<td>Commercial</td>
<td>237</td>
<td>5.7</td>
</tr>
<tr>
<td>Industrial</td>
<td>67</td>
<td>1.6</td>
</tr>
<tr>
<td>Institutional/Governmental</td>
<td>105</td>
<td>2.5</td>
</tr>
<tr>
<td>Landscape Irrigation</td>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>Agriculture</td>
<td>2,130</td>
<td>51.4</td>
</tr>
<tr>
<td>Water Losses</td>
<td>393</td>
<td>9.5</td>
</tr>
<tr>
<td>Total</td>
<td>4,143</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:
(1) CVWD, 2016. All values rounded.

ES3.2 Current Demands for-Low Income Households

One of the requirements of the UWMP Act is the evaluation of demands for lower income households. (CWC, 10631.1) According to the California Health and Safety Code, Section 50079.5 (a), “Lower income households” means persons and families whose income does not exceed the
qualifying limits for lower income families... In the event the federal standards are discontinued, the department shall, by regulation, establish income limits for lower income households for all geographic areas of the state at 80 percent of area median income, adjusted for family size and revised annually.”

The District does not track water demand for lower-income households. However, water demands for lower income households are included in the total water demands for single-family residential and multiple-family residential. The District provides water to all customers to meet customer demands including water necessary for lower income single-family households and multiple-family households.

ES3.3 Future Water Demands

Projected water use estimates are based on the small increases to the District’s customer base. Population growth within the District is anticipated to be 1,400 persons over the next 20 years (approximately 0.35 percent per year). All future new accounts will be metered and billed via volume-based rates. Total projected water demands will be approximately 4,148 AF in 2020 to 4,205 AF in 2040. Details regarding the District’s projected water demands for 2020 to 2040 are provided in Table ES-2. Agriculture is projected to be the largest customer category by volume used (2,090 AF) through 2040. Residential accounts are projected to be the second largest customer category by volume used (1,193 to 1,245 AFY) through 2040. Additional details regarding future water demands are provided in Section 3.

ES3.4 Future Demands for-Low Income Households

The UWMP Act includes the evaluation of demands for low income households. (CWC, 10631.1) Future low income housing is incorporated into population projections identified in Section 2. The District does not track water demand for lower-income households. However, water demands for lower-income households are included in the total water demands projected for single-family residential and multiple-family residential as summarized in Table ES-2. The City has sufficient water supplies to accommodate the increase in water demand associated with construction of potential new single-family and multiple-family housing units for lower-income residents.

ES3.5 Water Conservation Act of 2009

In February 2008, Governor Arnold Schwarzenegger introduced a seven-part comprehensive plan for improving the Sacramento-San Joaquin Delta. A key component of this plan was a goal to achieve a 20 percent reduction in per capita water use statewide by the year 2020 (also known as the 20x2020 target). The legislation sets a goal of achieving a 20 percent statewide reduction in urban per capita water use and directs urban retail water suppliers to set 2020 urban water use targets. This SB X7-7 legislation requires urban retail water suppliers to summarize the calculation of this water use target in the UWMP. An urban retail water supplier must set a year 2020 water use target and a 2015 interim target using one of four methods. (CWC, 10608.20(a)(1)) The District chose Method 3 - ninety-five percent (95%) of the applicable state hydrologic region target (Central Coast). The years 2015 and 2020 are referred to in the
methodologies as compliance years. Additional details regarding District compliance with SBX7-7 are provided in Section 3.

TABLE ES-2
PROJECTED DISTRICT TOTAL WATER DEMANDS 2020-2040

<table>
<thead>
<tr>
<th>Customer Classification (1,2)</th>
<th>2020 (AFY)</th>
<th>2025 (AFY)</th>
<th>2030 (AFY)</th>
<th>2035 (AFY)</th>
<th>2040 (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Residential</td>
<td>780</td>
<td>789</td>
<td>797</td>
<td>806</td>
<td>814</td>
</tr>
<tr>
<td>Multi-Family Residential</td>
<td>413</td>
<td>418</td>
<td>422</td>
<td>427</td>
<td>431</td>
</tr>
<tr>
<td>Commercial</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Industrial</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Institutional/Governmental</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Landscape Irrigation (3)</td>
<td>50</td>
<td>51</td>
<td>53</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>Agricultural</td>
<td>2,090</td>
<td>2,090</td>
<td>2,090</td>
<td>2,090</td>
<td>2,090</td>
</tr>
<tr>
<td>Water Losses (4)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
</tbody>
</table>

Notes:
(1) CVWD, 2016. All values rounded. Normal water-year.
(2) Projected demands based on projected development distributed equally over the period 2020 to 2040.
(3) For planning purposes, existing landscape areas with irrigation will remain on potable water until such time that areas are converted to recycled water.
(4) Includes existing water losses and losses within potential new developments. Water losses for new developments estimated to be 5 percent.

District compliance with the California Water Conservation Act of 2009 includes the following:
- Baseline period - 10-year: 2001-2010 (see Appendix E Table 1)
- Baseline period - 5-year: 2003-2007 (see Appendix E Table 1)
- Population 10-year range (2001-2010): 15,143 to 16,115 (see Appendix E Table 3)
- Population compliance year 2015: 14,993 (see Appendix E Table 3)
- Gross water use 10-year average (2001-2010): 2,211 acre-feet (see Appendix E Table 4)
- Gross water use 5-year average (2003-2007): 2,377 acre-feet (see Appendix E Table 4)
- Gross water use compliance year 2015: 2,053 (see Appendix E Table 4)
- Baseline per capita use 10-year avg. (2001-2010): 127 gpcd (see Appendix E Table 5)
- Baseline per capita use 5-year avg. (2003-2007): 136 gpcd (see Appendix E Table 5)
• District’s gallons per capita per day compliance year 2015: 122 gpcd (see Appendix E Table 5)
• Target Method: Method 3 – Hydrologic Region (see Appendix E Tables 7)
• Method 3 – Central Coast Hydrologic Region: 123 gpcd (see Appendix E Table 7E)
• Hydrologic Region (Central Coast): 95 percent target of 117 gpcd (see Appendix E Table 7E)
• District interim 2015 water use target: 122 gpcd (see Appendix E Table 8)
• District 2020 water use target: 117 gpcd (see Appendix E Table 7F)
• District’s actual water use compliance year 2015: 122 gpcd (see Appendix E Table 9)
• Did District meet 20X2020 2015 Interim Target gpcd? Yes.

See Appendix D Tables 5-1 and 5-2 and Appendix E Tables 1 to 9 for additional details.

ES4 – WATER SUPPLIES

ES4.1 Current Water Supplies

CVWD has a balanced water supply portfolio with surface water supplies from the Cachuma Project, surface water from the State Water Project, and groundwater from the Carpinteria Groundwater Basin. Potential maximum extraction of groundwater by the District is approximately 3,000 AFY, while the long-term average will be approximately 1,400 AFY. The District’s maximum local surface water allocation from the Cachuma Project is currently 2,813 AFY, while the long-term average will be approximately 1,970 AFY. Maximum allocation from the SWP is 2,200 AFY (including 200 AF of drought buffer), while the long-term average will be approximately 1,250 AFY. Each of these water supplies is described in detail in subsequent sections.

Table ES-3 summarizes the water supplies available in 2015 to meet demands within the CVWD service area (also see Appendix D, Table 6-8). Actual total District deliveries in 2015 were 3,887 AF, which included 2,943 AF (71 percent) from District wells, 468 AF (11 percent) from the Cachuma project, and 476 AF (12 percent) from SWP water. In addition to these primary supplies, the CVWD will periodically purchase water from or exchange water with neighboring water purveyors, such as the Santa Ynez River Water Conservation District and Santa Ynez Improvement District No. 1 (ID #1). The District received 246 AF (6 percent) in 2015 in an exchange agreement with ID #1.

For the period 2011 to 2015, local groundwater provided approximately 33 percent of the average annual water supply, while the Cachuma Project provided approximately 52 percent, and SWP water provided approximately 15 percent over the same period. Additional details regarding District water supplies are provided in Section 4.
TABLE ES-3
DISTRICT DELIVERED WATER SUPPLIES FOR 2015

<table>
<thead>
<tr>
<th>Water Supplies</th>
<th>2015 Water Supplies (AFY)</th>
<th>2015 Water Supplies (Percent of Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>2,943</td>
<td>71</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>468</td>
<td>11</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>476</td>
<td>12</td>
</tr>
<tr>
<td>Recycled Water (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desalination</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transfers or Exchanges In/Out (5)</td>
<td>246</td>
<td>6</td>
</tr>
<tr>
<td>Other (6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4,133</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Conservative estimate of long-term average for District pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; annual average District groundwater pumping is approximately 1,500 AFY (1984-2015); District anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)
(2) District’s current maximum allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) District’s current maximum allocation is 2,200 AFY (includes 200 AFY drought buffer program). However, the District understands that future deliveries will be less than the maximum allocation.
(4) District is currently evaluating potential long-term use of recycled water (CVWD, 2015).
(5) Exchange of SWP water for Cachuma Project water with Santa Ynez Improvement District #1.
(6) District has banked and utilized 1,000 AFY of State Water Project water. District anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)

ES4.1.1 Local Groundwater
The CVWD extracts water from the Carpinteria Groundwater Basin (Basin). The Basin includes approximately 16.6 square miles of surface area and multiple water bearing zones. Total storage in the aquifer is estimated to be approximately 700,000 AF (CVWD, 1986). Usable groundwater storage capacity is important because it determines how much groundwater can be stored during wet periods for use during droughts. Usable storage for the Basin recharge area was estimated to be nearly 39,000 AF. (Marks, 2015) Basin “sustainable-yield” is defined as the amount of groundwater that can be continuously withdrawn from a basin without adverse impact. (CADWR, 2003) Estimated sustainable-yield of the Basin Unit No. 1 is approximately 4,000 AFY (CVWD, 2012). It is not anticipated that CVWD and the private well owners would operate above the Basin sustainable-yield on a long-term basis without implementing efforts to replenish the Basin.
Groundwater rights in the Basin have not been adjudicated. The District under the authority of State Assembly Bill 3030 adopted a Groundwater Management Plan in order to establish its role as groundwater manager for the Carpinteria Groundwater Basin. This Plan was adopted on August 14, 1996 by the District’s Board of Directors (CVWD, 1996) and provides direction for the District as the managing entity for the Carpinteria Groundwater Basin. A copy of this Plan is provided in Appendix H.

Total pumping within the Carpinteria Basin by CVWD and private owners has averaged nearly 4,210 AFY from 2011 to 2015 (see Table ES-4 for details; also see Appendix D, Table 6-1). District-only pumping averaged approximately 1,446 AFY (34 percent of total pumping within Basin; 32 percent of annual water supplies) from 2011 to 2015, and 1,470 AFY for the period 1984 to 2015. (CVWD, 2016) Table ES-4 also indicates that District pumping ranged from 312 AF in 2013 to 2,943 AF in 2015 (6 percent to 71 percent of total District water supplies) for the period 2011 to 2015. Maximum recorded pumping by CVWD over the period 1984 to 2015 is 3,508 AF (1990). Maximum recorded total pumping within the District (including CVWD and private pumpers) during the period 1984 to 2015 is 5,541 AF (2015). This record pumping was likely due to a combination of statewide drought, reduced surface water deliveries, and reduced local precipitation.

TABLE ES-4
CARPINTERIA GROUNDWATER BASIN TOTAL PUMPING FOR 2011-2015

<table>
<thead>
<tr>
<th>Year</th>
<th>District Pumping (AFY)</th>
<th>Percentage of Total Pumping</th>
<th>Percentage of Annual Water Supplies</th>
<th>Private Pumping (AFY)</th>
<th>Percentage of Total Pumping</th>
<th>Total Basin Pumping (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1,365</td>
<td>36</td>
<td>34</td>
<td>2,428</td>
<td>64</td>
<td>3,793</td>
</tr>
<tr>
<td>2012</td>
<td>1,174</td>
<td>31</td>
<td>26</td>
<td>2,564</td>
<td>69</td>
<td>3,738</td>
</tr>
<tr>
<td>2013</td>
<td>312</td>
<td>9</td>
<td>6</td>
<td>3,060</td>
<td>91</td>
<td>3,372</td>
</tr>
<tr>
<td>2014</td>
<td>1,434</td>
<td>31</td>
<td>32</td>
<td>3,168</td>
<td>69</td>
<td>4,602</td>
</tr>
<tr>
<td>2015 (1)</td>
<td>2,943</td>
<td>53</td>
<td>71</td>
<td>2,598</td>
<td>47</td>
<td>5,541</td>
</tr>
<tr>
<td>Annual Average</td>
<td>1,446</td>
<td>34</td>
<td>32</td>
<td>2,764</td>
<td>66</td>
<td>4,210</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Private pumping for 2015 is not available at the present time. Estimated value for private pumping based on most recent 10-year average (2005-2014).

Private pumping averaged 2,764 AFY (66 percent of total pumping within the Basin) over the period 2011 to 2015 (see Table 4-3), and 2,270 AFY for the period 1984 to 2015. (CVWD,
2016) Maximum recorded pumping by private pumpers within the Basin over the period 1984 to 2015 is 3,168 AF (2014).

ES4.1.2 Surface Water Supplies

The District receives surface water supplies from the Cachuma Project and State Water Project (SWP). Each of these water supply sources is summarized below. Table ES-5 summarizes the surface water supplies received by the District for the period 2011 to 2015. Over the last five years, the District has received an annual average of 2,977 AFY from these sources.

TABLE ES-5
DISTRICT SURFACE WATER DELIVERIES FOR 2011-2015

<table>
<thead>
<tr>
<th>Year</th>
<th>Cachuma Project (AFY)</th>
<th>Percentage Annual Water Supplies</th>
<th>State Water Project (AFY) (1)</th>
<th>Percentage of Annual Water Supplies</th>
<th>Total Surface Water Deliveries (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2,172</td>
<td>56</td>
<td>501</td>
<td>12</td>
<td>2,673</td>
</tr>
<tr>
<td>2012</td>
<td>2,923</td>
<td>65</td>
<td>433</td>
<td>10</td>
<td>3,356</td>
</tr>
<tr>
<td>2013</td>
<td>3,697</td>
<td>76</td>
<td>862</td>
<td>18</td>
<td>4,559</td>
</tr>
<tr>
<td>2014</td>
<td>2,198</td>
<td>49</td>
<td>891</td>
<td>20</td>
<td>3,089</td>
</tr>
<tr>
<td>2015</td>
<td>468</td>
<td>11</td>
<td>736</td>
<td>18</td>
<td>1,204</td>
</tr>
<tr>
<td>Annual Average</td>
<td>2,292</td>
<td>52</td>
<td>685</td>
<td>16</td>
<td>2,977</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Includes water exchanged with ID #1.

ES4.1.2.1 Cachuma Project

Principal features of the Cachuma Project are Lake Cachuma, Bradbury Dam, Tecolote Tunnel, and South Coast Conduit (SCC) and related distribution systems. Lake Cachuma and Bradbury Dam were constructed by the U.S. Bureau of Reclamation (Bureau) as part of the Cachuma Project in the early 1950s. The lake includes a surface area of approximately 3,200-acres, 42 miles of coastline, and 195,600 acre feet of storage. Surface water stored in Lake Cachuma is treated at the Cater Water Treatment Plant (WTP), before being conveyed to CVWD.

The District receives water from the Cachuma Project (local surface water) which stores water in Lake Cachuma within the Santa Ynez River watershed in Santa Barbara County. The District purchased an annual average of 2,292 AF from the Cachuma Project over the period 2011 to 2015. This amount represents 52 percent of the District's total water supplies. Table ES-5 summarizes the Cachuma Project supplies received by the District for the period 2011 to 2015.
ES4.1.2.2 State Water Project

The California State Water Project (SWP) is the largest state-built, multi-purpose water project in the country. The primary purpose of the SWP is to deliver water to 29 urban and agricultural water suppliers in Northern California, the San Francisco Bay Area, San Joaquin Valley, Central Coast, and Southern California, including 20 million urban users and 750,000 acres of farmland. Of the contracted water supply, approximately 70 percent goes to urban users and 30 percent goes to agricultural users. The SWP system currently consists of 700 miles of canals and pipelines, 33 storage facilities, 21 reservoirs and lakes, 5 hydro-electric power plants, 4 pumping-generating plants, and 20 pumping plants. (CADWR, 2013a)

The SWP’s Coastal Branch serves the San Luis Obispo and Santa Barbara counties. The Central Coast Water Authority (CCWA) was formed to finance, construct, manage, and operate the 42-mile extension of the SWP pipeline from Vandenberg to Lake Cachuma (see Figure 4-8). CVWD contracts directly with CCWA for its SWP allocation. The District’s current allocation is 2,200 AFY. Actual SWP water deliveries to the District in 2015 were 736 AF which included 246 AF in an exchange with ID #1 (see Table ES-5 for details). For the period 2011-2015, SWP water provided approximately 685 AFY (16 percent of the District’s water resources). Table ES-5 summarizes the SWP supplies received by the District for the period 2011 to 2015.

ES4.1.3 Additional Water Supply Projects

The District currently participates in two “out of District storage programs”. The first program includes a cooperative arrangement for groundwater banking called “Short-Term Water Storage Partnership” (Rosedale-Rio Bravo Water Storage District and Irvine Ranch Water District), which the District has participated in since 2008. This program involves storage of SWP water in the groundwater basins managed by the Rosedale-Rio Bravo Water Storage District. The second program involves the District temporarily storing SWP carryover water in San Luis Reservoir. The groundwater banking program and storage in San Luis Reservoir are two programs made available to increase overall SWP supply reliability. Currently, the District has approximately 1,271 AF of deliverable water stored in out of District storage programs. Implementation of a portion of these arrangements, or any future potential water storage or banking arrangements, can reasonably be expected to provide up to 1,000 AF of supply in future years, and CVWD anticipates increasing this out of District storage amount between 2015 and 2040.

ES4.1.4 Sales, Transfers, and Exchanges

CVWD participates regularly in a SWP exchange program with Santa Ynez Improvement District No. 1 (ID #1), located downstream of Lake Cachuma. Under the exchange program, CVWD typically purchases approximately 400 AF of SWP and supplies it to ID #1 for its use. In exchange, ID #1 supplies an equal amount of Lake Cachuma water to CVWD. In addition, the CVWD can receive water from the Casitas Municipal Water District (CMWD). The CMWD can provide surface water from Lake Casitas. An 8-inch piped connection exists between CMWD and CVWD systems. If more flow is required than the capacity of the existing 8-inch pipeline can deliver, as was the case during the 1987 to 1991 drought, then an overland pipe could be installed to convey the additional flow. An emergency water exchange agreement remains in place with CMWD. For this reason, the CVWD has considered this a limited potential
water supply. The CVWD also receives CMWD water for sale to CMWD customers adjacent to
the CVWD service area. The District continues to explore opportunities to sell a portion of its
State Water Project (SWP) entitlement. The District is considering selling up to 1,000 AF of
SWP entitlement. Additional details are provided in Section 4.2.3.

ES4.2 Water Quality

The District has both surface water and groundwater sources which present very different water
quality issues. Surface water comes from State Water Project (Sacramento Delta) and Lake
Cachuma (from the Santa Ynez River watershed) and the groundwater is locally produced via
District wells. The District meets all water quality requirements of the California Division of
Drinking Water (CADDW). Manganese arises as a secondary water quality concern for
groundwater, and this is controlled via a treatment system. Groundwater is also used to blend
with the imported supplies to reduce disinfection by-products. Water quality issues of concern
that affect raw water held in surface reservoirs (Lake Cachuma and SWP) include: total organic
carbon, taste and odor, color, bacteriological, and disinfection byproducts. These issues are
typical of surface waters in California and resolved via treatment modifications. The District has
no known water quality violations with respect to groundwater or surface water sources. A copy
of the 2015 Consumer Confidence Report (CCR) is provided in Appendix I. The District does
not anticipate additional water quality concerns for the period 2020 to 2040. Additional details
are provided in Section 4.3.

ES4.3 Future Water Supplies

A variety of existing water sources will be used by the District to meet water demands for the
period 2020 to 2040 including local groundwater, local surface water from Cachuma Lake, and
imported surface water from the SWP. Table ES-6 summarizes the projected maximum
available water supplies for the period 2020 to 2040 to meet water demands within the CVWD
service area (also see Appendix D, Table 6-9). Projected maximum available water supplies for
the period 2020 to 2040 will be approximately 8,013 AFY, however this total is not sustainable.
Potential maximum short-term extraction of groundwater by the District is 3,000 AFY, while the
conservative long-term average (sustainable-yield) will be approximately 1,400 AFY. The
District's maximum local surface water allocation from the Cachuma Project is currently 2,813
AFY, while the District understands that future deliveries will be less than the maximum
allocation. Maximum allocation from the SWP is 2,200 AFY (including 200 AF of drought
buffer), while the District understands that future deliveries will be less than the maximum
allocation. Additional details are provided in Section 4.4.

Table ES-7 summarizes the projected conservative long-term available water supplies for the
period 2020 to 2040 to meet water demands within the CVWD service area in normal water-
years (also see Appendix D, Table 6-9). Projected long-term available water supplies for
the period 2020 to 2040 will be approximately 4,620 AFY. Table ES-7 indicates that the District’s
projected conservative long-term groundwater extractions are anticipated to be approximately
1,400 AFY (consistent with Basin sustainable-yield). It is anticipated that groundwater
extractions will be approximately 30 percent of the District’s total water supplies from 2020 to
2040. The District’s projected long-term available deliveries of local surface water from the
Cachuma Project are anticipated to be approximately 1,970 AFY (including conservative estimate of average annual delivery of 70 percent of allocation due to sedimentation in the lake, releases for fish species, and downstream water rights). It is anticipated that surface water from the Cachuma Project will be approximately 43 percent of the District’s total water supplies from 2020 to 2040. The District’s projected long-term available deliveries from the SWP are anticipated to be approximately 1,250 AFY (including conservative estimate of average annual delivery of 58 percent of allocation) with approximately 400 AFY exchanged with ID#1. It is anticipated that SWP water will be approximately 27 percent of the District’s total water supplies from 2020 to 2040.

TABLE ES-6

PROJECTED MAXIMUM AVAILABLE WATER SUPPLIES 2020-2040

Note: District supplies in a single normal water-year (not sustainable)

<table>
<thead>
<tr>
<th>Water Supplies (AFY)</th>
<th>Projected 2020</th>
<th>Projected 2025</th>
<th>Projected 2030</th>
<th>Projected 2035</th>
<th>Projected 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>2,813</td>
<td>2,813</td>
<td>2,813</td>
<td>2,813</td>
<td>2,813</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
</tr>
<tr>
<td>Recycled Water (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desalination</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transfers or Exchanges In/Out (5)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Other (6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>8,013</td>
<td>8,013</td>
<td>8,013</td>
<td>8,013</td>
<td>8,013</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) District pumping can be increased up to the operational yield of 3,000 AFY to offset demands. District anticipates a conservative estimate of long-term average for pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; current annual average District groundwater pumping is approximately 1,500 AFY (1984-2015). (McDonald, 2016)
(2) District current maximum allocation is 2,813 AFY. (McDonald, 2016)
(3) District current maximum allocation is 2,200 AFY (includes 200 AFY drought buffer program). The projected value of 1,800 AF reflects the total allocation (2,200) minus the ID#1 exchange volume of 400 AF. (McDonald, 2016)
(4) District is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse. (McDonald, 2016)
(5) District approved up to 400 AF of SWP water for exchange with ID #1. (McDonald, 2016)
(6) District has banked and utilized 1,000 AFY of State Water Project water. District anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)

TABLE ES-7

PROJECTED LONG-TERM AVAILABLE WATER SUPPLIES 2020-2040

Note: District supplies in a single normal water-year (assuming sustainable management of each supply)

<table>
<thead>
<tr>
<th>Water Supplies (AFY)</th>
<th>Projected 2020</th>
<th>Projected 2025</th>
<th>Projected 2030</th>
<th>Projected 2035</th>
<th>Projected 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Recycled Water (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desalination</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transfers or Exchanges In/Out (5)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Other (6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Conservative estimate of long-term average for District pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; current annual average District groundwater pumping is approximately 1,500 AFY (1984-2015); pumping can be increased up to the District’s operational yield (3,000 AFY) to offset demands. (McDonald, 2016)
(2) District’s conservative long-term planning estimate assumes delivery of 1,970 AFY (70 percent delivery) of maximum allocation of 2,813 AFY (McDonald, 2016).
(3) District’s conservative long-term planning estimate assumes delivery of 1,250 AFY (58 percent delivery) of SWP Table A water with 400 AFY exchanged with the ID #1. (McDonald, 2016; CADWR, 2014)
(4) District is currently evaluating potential long-term use of recycled water (CVWD, 2015). Conservative estimate assumes no recycled water available for direct or indirect reuse. (McDonald, 2016)
(5) District approved up to 400 AF of SWP water for exchange with ID #1. (McDonald, 2016)
(6) District has banked and utilized 1,000 AF of State Water Project water. District anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)

There are several alternatives that the District may consider for increasing future water supplies for the period 2020 to 2040 including, but not limited to, the following: additional groundwater supplies, groundwater banking, conjunctive use, maximize use of surface water rights, transfer or
exchange of water rights, use of recycled water, groundwater or ocean desalination, and additional support for water demand management programs (see Section 7).

ES4.4 Climate Change

Current climate change projections suggest that California will continue to enjoy a Mediterranean climate with the typical seasonal pattern of relatively cool and wet winters and hot, dry summers. However, climate patterns are different now and may continue to change at an accelerated pace. Increases in global emissions of greenhouse gases are leading to serious consequences for California including, but not limited to, the following: higher air and water temperatures, rising sea levels, increased droughts and floods, decreased amount and duration of snow pack, and extreme variability in weather patterns. (CADWR, 2013a; CANRA, 2009) These changes are anticipated to intensify over the 20-year planning horizon of this UWMP. Even if all emissions of greenhouse gases ceased today, some of these developments would be unavoidable because of the increase in greenhouse gases recorded over the last 100 years and the fact that the climate system changes slowly. (PPIC, 2011) Many of these climate changes would affect the availability, volume, and quality of California water supplies.

As climate change continues to unfold in the coming decades, water agencies may need to mitigate and adapt to new strategies, which may require reevaluating existing agency missions, policies, regulations, facilities, funding priorities, and other responsibilities. Current environmental regulations place a very high priority on releasing additional water for endangered species (i.e., Sacramento Delta and Santa Ynez River) and the environment. There will be more competition for scarce water supplies between people and the environment. Resolving this conflict will be one of the biggest challenges confronting water agencies. The goal of the District is to utilize the available surface water and groundwater supplies as effectively as possible in meeting the requirements of the District’s water users. It is worth noting, however, that the District’s control over water supplies is limited; thus management practice changes will need to be adaptive in nature. Additional details regarding climate change are provided in Section 4.6.

ES5 – WATER SUPPLY RELIABILITY

ES5.1 Reliability

Water supply reliability is a measure of a water service system’s anticipated success in managing water shortages. Analysis of water supply reliability is one of the primary requirements of the Urban Water Management Plan (Water Code Section 10635(a)). This assessment includes a comparison of the total projected water supplies available with the projected water demands through the year 2040 for the following conditions: (1) normal/average water-year, (2) single dry water-year, (3) multiple consecutive dry water-years, and (4) three-year minimum supply. Results for the assessment for each of these conditions are described below. Additional details regarding water supply reliability are provided in Section 5.4.

ES5.2 Normal Water-Year Assessment

Local groundwater, Cachuma surface water, and SWP surface water are anticipated to be the primary water supplies through 2040. For the normal water-year assessment, the District
selected 2009 as the basis for the evaluation (see Section 5 Table 5-1). Table ES-8 (also see Appendix D, Table 7-2) indicates that total water supplies available in normal water-years is projected to be 4,620 AF for the period 2020 to 2040. Total water demands are projected to be 4,148 to 4,205 AF for the period 2020 to 2040. Table ES-8 indicates that the District’s projected conservative long-term groundwater extractions are anticipated to be approximately 1,400 AF (consistent with Basin sustainable-yield). The District’s projected long-term available deliveries of local surface water from the Cachuma Project are anticipated to be approximately 1,970 AF (including conservative estimate of average annual delivery of 70 percent of allocation due to sedimentation in the lake, releases for fish species, and downstream water rights). The District’s projected long-term available deliveries from the SWP are anticipated to be approximately 1,250 AF (including conservative estimate of average annual delivery of 58 percent of allocation) with approximately 400 AF exchanged with ID#1.

Table ES-8 indicates that the District will have an estimated net positive supply or contingency ranging from approximately 472 AF in 2020 to approximately 415 AF in 2040. Thus, no deficit was observed during the assessment of normal water-year supplies and demands. The District desires to have a minimum water supply surplus or contingency of approximately 200 AF each year in the event of an interruption of water supply due to operational or climate adversity. CVWD anticipates that groundwater pumping within the basin would be increased up to the sustainable-yield to offset increased demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

ES5.3 Single Dry Water-Year Assessment

Local groundwater, Cachuma surface water, and SWP surface water are anticipated to be the District’s primary water supplies through 2040. Table ES-9 (also see Appendix D, Table 7-3) indicates that total water supplies available in single dry water-years is projected to be 5,212 AF for the period 2020 to 2040. Total water demands are projected to range from 4,770 to 4,836 AF for the period 2020 to 2040 (increase of 15 percent over normal water-year demands). Table ES-9 indicates that the District’s projected groundwater extractions during a single dry water-year are anticipated to be approximately 3,000 AF. The District’s projected available deliveries of local surface water from the Cachuma Project for a single dry water-year are anticipated to be approximately 1,970 AF (including conservative estimate of average annual delivery of 70 percent of allocation due to sedimentation in the lake, releases for fish species, and downstream water rights). The District’s projected available deliveries from the SWP for a single dry water-year are anticipated to be approximately 242 AF (including conservative estimate of average annual delivery of 11 percent of allocation).

Table ES-9 indicates the District will have an estimated net positive water supply or contingency of approximately 442 AF in 2020 to 376 AF in 2040. Thus, no deficit was observed during the assessment of single dry water-year supplies and demands. The District desires to have a minimum water supply surplus or contingency of approximately 200 AF each year in the event of an interruption of water supply due to operational or climate adversity. CVWD anticipates that groundwater pumping within the basin would be increased to offset increased water demands. In
addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

TABLE ES-8
PROJECTED NORMAL WATER-YEAR SUPPLY AND DEMAND 2020-2040

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Exchange (3)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Other (4,5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supply Total</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
</tr>
<tr>
<td>Demand Total (6)</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
<tr>
<td>Difference (7)</td>
<td>472</td>
<td>457</td>
<td>443</td>
<td>428</td>
<td>415</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD 2016. All values in AFY and rounded.
(1) Current conservative estimate of long term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015); CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)
(2) Cachuma supply at 1,970 AFY represents the most current understanding of the normal year yield from the Project (70% delivery of 2,813 AFY). (McDonald, 2016). In addition, the District could use Cachuma Project carryover water. District’s current maximum Cachuma allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation.
(3) SWP delivery may be 1,250 AFY which represents the most current understanding of the normal water-year yield from the SWP (58% delivery of max allocation at 2,200 AFY). In addition, the District could use SWP carryover water. The projected SWP value of 850 AFY reflects the average delivery (1,250 AFY) minus the ID#1 exchange volume of 400 AF. (McDonald, 2016) District’s current maximum SWP allocation is 2,200 AFY (includes 200 AFY drought buffer program). However, the District understands that future deliveries will be less than the maximum allocation.
(4) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse.
(5) CVWD has banked and utilized 1,000 AFY of State Water Project water. CVWD anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)
(6) Does not include potential additional reduction of demand of 10 percent for period 2020-2040 utilizing water enhanced demand management measures for urban and agricultural customers.
(7) The difference represents the sum of supplies minus demands. The CVWD desires to maintain a positive supply or contingency of a minimum of 200 AFY in order to account for unforeseen changes in supplies or demands.
TABLE ES-9
PROJECTED SINGLE DRY WATER-YEAR SUPPLY AND DEMAND 2020-2040

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Total (1,2,3,4,5)</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
</tr>
<tr>
<td>Demand Total (6)</td>
<td>4,770</td>
<td>4,787</td>
<td>4,804</td>
<td>4,821</td>
<td>4,836</td>
</tr>
<tr>
<td>Difference (7)</td>
<td>442</td>
<td>425</td>
<td>408</td>
<td>391</td>
<td>376</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values in AFY and rounded. Assumes normal water-year precedes single dry year.
(1) CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. Current conservative estimate of long-term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015). (McDonald, 2016)
(2) Projected Cachuma Project delivery of 1,970 AFY represents the most current understanding of the normal water-year yield from the Project (70% delivery of max. allocation of 2,813 AFY). In addition, the District could use Cachuma Project carryover water. District’s current maximum Cachuma allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) Projected SWP delivery is 242 AFY which represents the most current understanding of the single dry water-year yield from the SWP (11% delivery of max allocation at 2,200 AFY). In addition, the District could use SWP carryover water. District’s current maximum SWP allocation is 2,200 AFY (includes 200 AFY drought buffer program). However, the District understands that future deliveries will be less than the maximum allocation. The District anticipates no exchange with the ID#1 in a single dry water-year. (McDonald, 2016)
(4) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse.
(5) CVWD has banked and utilized 1,000 AFY of State Water Project water. CVWD anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)
(6) Does not include potential additional reduction of demand of 10 percent for period 2020-2040 utilizing water enhanced demand management measures for urban and agricultural customers.
(7) The difference represents the sum of supplies minus demands. The CVWD desires to maintain a positive supply or contingency of a minimum of 200 AFY in order to account for unforeseen changes in supplies or demands.

ES5.3 Multiple Dry Water-Year Assessment
Local groundwater, Cachuma surface water, and SWP surface water are anticipated to be the District’s primary water supplies through 2040. For the multiple dry water-years assessment, the District selected 2012 to 2015 as the basis for the evaluation (see Section 5 Table 5-1). Table ES-10 (also see Appendix D, Table 7-4) indicates that in year 1 of the multiple dry water-year assessment, CVWD is projected to have 6,151 to 6,814 AFY of available water supplies compared to water demands ranging from 4,148 to 4,205 AFY for a net positive surplus of 1,946 to 2,666 AFY. Table ES-10 indicates that in year 2 of the multiple dry water-year assessment, CVWD is projected to have 6,126 to 6,561 AFY of available water supplies compared to water demands of 4,770 to 4,836 AFY for a net positive surplus of 1,322 to 1,791 AFY. In year 3 of the multiple dry water-year assessment, CVWD is projected to have 4,767 to 5,176 AFY of available water supplies compared to water demands of 4,438 to 4,499 AFY for a net positive surplus of 312 to 676 AFY. In year 4 of the multiple dry water-year assessment, CVWD is projected to have 3,669 to 3,879 AFY of available water supplies compared to water demands of
3,526 to 3,574 AFY for a net positive surplus of 119 to 305 AFY. Additional analyses are provided in Appendix O.

TABLE ES-10
PROJECTED MULTIPLE DRY WATER-YEARS SUPPLY AND DEMAND 2020-2040

<table>
<thead>
<tr>
<th>Year</th>
<th>Supply Total (1,2,3,4,5)</th>
<th>Demand Total (6)</th>
<th>Difference (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>6,814</td>
<td>4,148</td>
<td>2,666</td>
</tr>
<tr>
<td>Year 1</td>
<td>6,151</td>
<td>4,163</td>
<td>1,988</td>
</tr>
<tr>
<td></td>
<td>6,151</td>
<td>4,177</td>
<td>1,974</td>
</tr>
<tr>
<td></td>
<td>6,151</td>
<td>4,192</td>
<td>1,959</td>
</tr>
<tr>
<td></td>
<td>6,151</td>
<td>4,205</td>
<td>1,946</td>
</tr>
<tr>
<td>2025</td>
<td>6,151</td>
<td>4,163</td>
<td>1,988</td>
</tr>
<tr>
<td>2030</td>
<td>6,126</td>
<td>4,177</td>
<td>1,974</td>
</tr>
<tr>
<td>2035</td>
<td>6,211</td>
<td>4,192</td>
<td>1,959</td>
</tr>
<tr>
<td>2040</td>
<td>6,298</td>
<td>4,205</td>
<td>1,946</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values in AFY and rounded. See Appendix O for derivation of each value.
(1) Projected groundwater production is 1,100 to 2,800 AFY. Current conservative estimate of long term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015); CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)
(2) Projected Cachuma Project delivery is 0 to 2,813 AFY. District projects Cachuma Project carryover water of 291 to 1,509 AFY. District’s current maximum Cachuma allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) Projected SWP delivery is 682 AFY which represents the most current understanding of the multiple dry water-year yield from the SWP (31% delivery of max allocation at 2,200 AFY). District projects SWP carryover water of 382 to 825 AFY. Current maximum SWP allocation is 2,200 AFY (includes 200 AFY drought buffer program). However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(4) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse.
(5) CVWD has banked and utilized 1,000 AFY of State Water Project water. CVWD anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)
(6) Does not include potential additional reduction of demand of 10 percent for period 2020-2040 utilizing water enhanced demand management measures for urban and agricultural customers.
(7) The difference represents the sum of supplies minus demands. The CVWD desires to maintain a positive supply or contingency of a minimum of 200 AFY in order to account for unforeseen changes in supplies or demands.

Table ES-10 indicates that the District will have an estimated net surplus of water supplies or contingency of approximately 119 to 2,666 AFY for the period 2020 to 2040. Thus, no deficit was observed during the assessment of multiple dry water-year supplies and demands. The District desires to have a minimum water supply surplus or contingency of approximately 200 AF each year in the event of an interruption of water supply due to operational or climate adversity. CVWD anticipates that groundwater pumping within the basin would be increased to offset increased water demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

ES5.4 Minimum Three Year Supply

For short-term water reliability, the District relies on the many possible water supplies. These short-term supplies include local groundwater, local surface water from Lake Cachuma, imported State Project water, exchanges with other water districts on the central coast, local storage, and an emergency connection to Casitas Municipal Water District. Additional emergency procedures are summarized in Section 6.

The District evaluated minimum water supplies available during the period 2016 to 2018. Normal water-year water supplies are approximately 4,620 AF (see Table ES-11 for details). The District would have a three-year minimum water supply total of approximately 6,100 AF in 2016, 6,070 AF in 2017, and 5,420 AF in 2018 as summarized in Table ES-11 (also see Appendix D, Table 8-4). The District anticipates no water supply deficit for the period 2016 to 2018. CVWD anticipates that groundwater pumping within the basin would be increased to up to the operation yield of 3,000 AFY offset increased water demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

TABLE ES-11

ESTIMATED THREE-YEAR MINIMUM WATER SUPPLY 2016-2018

<table>
<thead>
<tr>
<th>Supplies (AFY)</th>
<th>Normal</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (1,2,3)</td>
<td>4,620</td>
<td>6,100</td>
<td>6,070</td>
<td>5,420</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values in AFY and rounded.
(1) Current conservative estimate of long term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015); CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)
(2) Based on District’s current maximum Cachuma Project allocation of 2,813 AFY. In addition, the District could use Cachuma Project carryover water. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) Based on District’s current maximum SWP allocation of 2,200 AFY (includes 200 AFY drought buffer program). In addition, the District could use SWP carryover water. However, the District understands that future deliveries will be less than the maximum allocation.
ES6 – WATER SHORTAGE CONTINGENCY PLANNING

ES6.1 Mandatory Prohibitions on Water Wasting

Prohibition on waste of water usage was originally enacted in Ordinance No. 90-1 (copy provided in Appendix H) and has been restated in Ordinance No. 15-2 (copy provided in Appendix H).

Examples of specific restrictions and prohibited wasteful practices include, but are not limited to, the following: no use of running water for hosing or washing down driveways, walkways, and buildings; restaurants are to refrain from serving water unless requested by customers; no outside watering between 10:00 a.m. and 4:00 p.m. by hand or moveable landscape irrigation system; no outside watering between 8:00 a.m. and 6:00 p.m. by a fixed landscape irrigation system; no watering after measurable rainfall events; controls on boat and vehicle washing; no use of water which results in runoff beyond the immediate area of use; and leaks must be repaired within seventy-two (72) hours of discovery or notification by the District.

ES6.2 Water Shortage Contingency Planning

In order to plan for a reliable water supply District staff examined both the possibility of short-term and long-term shortages. A short-term water shortage could result from a disaster such as an earthquake, flood, or even a widespread power outage. A long-term water shortage would most likely result from a long period of drought in the region. Durations of severe droughts in this region have historically lasted 3 to 5 years.

ES6.3 Water Shortage Contingency Ordinance/Resolution

The District adopted Resolution No. 547 in 1990 to address water shortage emergencies (copy provided in Appendix H). The District adopted Ordinance No. 90-1 in 1990 to address drought regulations and water conservation standards (copy provided in Appendix H). Ordinance No. 90-2, also adopted in 1990, addresses restrictions on uses of water within the District (copy provided in Appendix H). Ordinance No. 90-3, adopted in 1990, addresses restrictions upon the delivery of water within the District (copy provided in Appendix H).

On February 12, 2014, the District adopted Resolution 972, declaring a Stage One (1) Drought Emergency to address drought conditions and request a 20 percent voluntary reduction in consumption from District customers. Resolution 980 was adopted in August 2014, incorporating prohibited activities defined by the State Water Resources Control Board’s (SWRCB) Drought Emergency Water Conservation Regulation, and instituting financial penalties for violations of regulations prohibiting such activities. Ordinance 14-1, consolidating Resolutions 972 and 980, adding new requirements, and establishing enforcement measures was adopted in October 2014 (copy provided in Appendix H). Ordinance 15-2 was adopted in May 2015 which declared a Stage Two (2) Drought Condition with mandatory water use restrictions to achieve an immediate reduction in local municipal and industrial (M&I) water consumption by 20 percent in order to comply with the mandated state-wide reduction in water usage by 25 percent. In addition, Ordinance 15-2 incorporates additional prohibited activities and watering restrictions (copy provided in Appendix H).
ES6.4 Stages of Action and Reduction Goals

The District will use a three-stage rationing plan to invoke during declared water shortages. The rationing plan includes voluntary and mandatory rationing, depending on the causes, severity, and anticipated duration of the water supply shortage. Table ES-12 summarizes the District’s water rationing stages and reduction goals which range from 15 percent to 50 percent. The District will consider adding additional stages (i.e., up to total of 5 stages) in the near future.

TABLE ES-12
WATER SHORTAGE STAGES AND GOALS

<table>
<thead>
<tr>
<th>Shortage Condition</th>
<th>Stage</th>
<th>Customer Reduction Goal</th>
<th>Type of Rationing Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 15 Percent</td>
<td>1</td>
<td>15%</td>
<td>Voluntary</td>
</tr>
<tr>
<td>15 to 30 Percent</td>
<td>2</td>
<td>25%</td>
<td>Voluntary</td>
</tr>
<tr>
<td>30 to 50 Percent</td>
<td>3</td>
<td>50%</td>
<td>Mandatory</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016.

ES6.5 Water Shortage Stages and Triggering Mechanisms

The water shortage response is designed to provide a minimum of 50 percent of normal supply during a severe or extended water shortage. The rationing program triggering levels shown below were established to ensure that this goal is met. Water shortage stages are provided in Table ES-12.

The District’s potable water sources are local groundwater, surface water from Lake Cachuma, and imported State Water Project water. Rationing stages may be triggered by a supply shortage or by contamination in one source or a combination of sources. Shortages may overlap Stages, therefore triggers automatically implement the more restrictive Stage. Criteria for triggering the rationing stages are shown in Table ES-13 below. A decision by the General Manager and ratification by the Board of Directors will be the mechanism by which the District will declare stage 1, 2 or 3 rationing requirements.
TABLE ES-13
WATER SHORTAGE STAGES AND TRIGGERING MECHANISMS

<table>
<thead>
<tr>
<th>Percent Reduction of Supply</th>
<th>Stage 1 Up to 15%</th>
<th>Stage 2 15 - 30%</th>
<th>Stage 3 30-50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Supply Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Deficit</td>
<td>(1) Estimated demand is projected to exceed total supply by up to 15%. And (2) Below “normal” year is declared. Or</td>
<td>(1) Estimated demand is projected to exceed total supply by 15-30%. And (2) Below “normal” year is declared. Or</td>
<td>(1) Estimated demand is projected to exceed total supply by over 30%. And (2) Fourth consecutive below “normal” year is declared and carryover water is depleted. Or</td>
</tr>
<tr>
<td>Water Quality</td>
<td>(1) Contamination of up to 15% of water supply (exceeds primary drinking water standards). Or</td>
<td>(1) Contamination of 15-30% of water supply (exceeds primary drinking water standards). Or</td>
<td>(1) Contamination of over 30% of water supply (exceeds primary drinking water standards). Or</td>
</tr>
<tr>
<td>Disaster Loss</td>
<td>As Necessary.</td>
<td>As Necessary.</td>
<td>As Necessary.</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016.

ES6.6 Current Stage

The District Board of Directors approved Ordinance 15-2 on May 13, 2015, which authorized staff to implement Stage 2 measures. A copy of Ordinance 15-2 is provided in Appendix H. The District will select from a menu of options to achieve the required demand reduction goal as provided in Table ES-12.

ES7 – DEMAND MANAGEMENT MEASURES

ES7.1 Introduction

“Demand management,” as applied to water conservation, refers to the use of measures, practices, or incentives implemented by water utilities to permanently reduce the level or change
the pattern of demand for a utility service. Historically, the District has actively pursued water demand management. There have been and continue to be many programs implemented by the District and Santa Barbara County. The Urban Water Management Planning Act requires the UWMP include a description of 7 specific demand management categories (DMMs). (CWC, 10631(f)(1)) These categories include the following: water waste prevention ordinances, metering, conservation pricing, public education and outreach, water loss control, conservation program coordination and staffing, and other demand management measures that significantly impact water use.

ES7.2 California Urban Water Conservation Council

The California Urban Water Conservation Council (CUWCC) was formed in 1991 to increase efficient water use statewide through partnerships among urban water agencies, public interest organizations, and private entities. The goal of the CUWCC is to integrate urban water conservation Best Management Practices (BMPs) into the planning and management of California's water supplies. CUWCC is composed of hundreds of urban water suppliers and environmental organizations. The District is a signatory to the CUWCC document titled, Memorandum of Understanding Regarding Urban Water Conservation in California (MOU, CUWCC, 2007) and is therefore a member of the CUWCC. This MOU includes a list of 14 BMPs for demand management which are very similar to the measures required by the UWMP Act. Copies of the District’s most recent CUWCC reports are provided in Appendix J.

ES7.3 Demand Management Measures

The District administers several demand management programs for residential, commercial, and agricultural customers. These measures include the following categories as required by the UWMP (CWC, 10631(f)(1)):

- Water waste prevention ordinances
- Metering
- Conservation pricing
- Public education and outreach
- Water loss control
- Conservation program coordination and staffing
- Other demand management measures that significantly impact water use.

Details related to the District’s current and future urban demand management programs are provided in Section 7.3. Details related to the District’s current and future agricultural demand management programs are also provided in Section 7.3.
SECTION 1: INTRODUCTION

This section presents a summary of the Objectives, Scope of Work, and Authorization for this report.

1.1 OBJECTIVES

The Carpinteria Valley Water District (CVWD or District) is pleased to release this Urban Water Management Plan (UWMP) 2016 Update. The District is required to prepare the UWMP per the requirements of the California Water Code (Section 10610-10656). This UWMP complies with the Guidebook for Urban Water Suppliers – 2015 Urban Water Management Plans (2016) as prepared by the California Department of Water Resources.

The District’s UWMP was prepared in compliance with California Water Code (Section 10610-10656; Urban Water Management Planning Act). The California Water Code requires urban water suppliers serving more than 3,000 customers or water suppliers providing more than 3,000 AF of water annually to prepare an UWMP. This UWMP provides planning information on the reliability and future availability of the District’s water supply. This UWMP is a public statement of the goals, objectives, and strategies needed to maintain a reliable water supply for the District’s urban customers. It is important to understand that this UWMP should be viewed as a long-term, general planning document, rather than as policy for supply and demand management. Additional details regarding the Urban Water Management Planning Act and California Water Code Section 10600-10656 are provided in Section 1.4.

1.2 FORMAT OF URBAN WATER MANAGEMENT PLAN

This UWMP is divided into seven primary sections. Section 1 includes an introduction to the UWMP and procedures for public review, adoption, and submittal of the UWMP. Section 2 describes the District’s water service area. Section 3 defines the District’s water demands. Section 4 defines the District’s water supplies. Section 5 describes the District’s water supply reliability. Section 6 defines the District’s water shortage contingency planning. Section 7 describes the District’s water demand management (i.e., water conservation) activities. References are provided following Section 7. A list of frequently used abbreviations and acronyms is included at the end of the Table of Contents, and definitions for selected abbreviations and terminology are included in Appendix A. A copy of the District’s UWMP checklist is provided in Appendix M.

1.3 URBAN WATER MANAGEMENT PLANNING ACT

1.3.1 Summary

This document meets the requirements for the UWMP as per California Water Code (Section 10610-10656) which requires urban water suppliers to prepare an UWMP to promote water conservation and efficient water use. A copy of the UWMP Act is provided in Appendix B. This UWMP provides planning information on the reliability and future availability of the District
water supply. This UWMP is a public statement of the goals, objectives, and strategies needed to maintain a reliable water supply for the District’s customers. It is important to understand that this UWMP should be viewed as a long-term, general planning document, rather than as policy for supply and demand management.

Primary objectives of this UWMP include the following:

- Quantify anticipated water demands over a 20-year period
- Identify and quantify water supplies over a 20-year period
- Summarize reliability of water supplies for existing and future demands, in normal, dry, and multiple dry years, over a 20-year period
- Summarize water conservation and efficient water use programs.

This UWMP provides information on present and future water supplies and demands, and provides an assessment of District’s water resource needs. It serves as a long-range planning document for District’s water supply. Droughts, limited supplies, environmental demands - all of these factors must be taken into consideration to provide a safe and reliable water supply for the District’s customers. The intention of the UWMP is to demonstrate District’s water supply reliability over the next 25 years in 5-year increments. The plan addresses the District’s water system and includes a description of available water supply sources, consequences of historical and projected water use, and a comparison of water supply to water demands during a normal water-year, single dry water-year, and multiple dry water-years. It also describes District’s efforts to implement water conservation and water efficient uses for urban and agricultural water supplies. This UWMP is District’s commitment to a long-term plan to ensure water reliability into the future. A copy of the current Urban Water Management Planning Act is provided in Appendix B.

1.3.2 Introduction

In 1983, the California Legislature enacted the Urban Water Management Planning Act (AB 797; Water Code, Division 6, Part 2.6, Section 10610-10656). This Urban Water Management Planning Act requires water suppliers serving more than 3,000 customers or water suppliers providing more than 3,000 AF of water annually to prepare an UWMP to promote water demand management and efficient water use. Currently, the District serves more than 3,000 customers and provides more than 3,000 AF of water per year. The Urban Water Management Planning Act also required water suppliers to develop, adopt, and file an UWMP (or update) every five years until 1990. In 1990, the Legislature deleted this sunset provision (AB 2661). Accordingly, the UWMP must be updated a minimum of once every five years on or before December 31 in the years ending in 0 and 5.

The Legislature enacted two measures that modified the Urban Water Management Planning Act in 1991. The first measure requires water suppliers to include an urban water shortage contingency analysis as part of its urban water management plan (AB 11). This measure also exempts the implementation of urban water shortage contingency plans from the California Environmental Quality Act (CEQA). The second measure requires an UWMP to describe and
evaluate water recycling activities, to be updated once every five years, include an estimate of projected potable and recycled water use, and to describe activities relating to water audits and incentives (AB 1869). Another provision of this bill requires agricultural water suppliers to include in their informational reports and water management plans a description of water recycling activities.

In 1993, the Legislature enacted a measure, which allows members of the California Urban Water Conservation Council (CUWCC) to submit to the state a copy of their annual report to the Council to satisfy current reporting requirements relating to urban water management plans (AB 892).

The Legislature enacted two measures in 1994. The first measure authorizes an urban water supplier to recover in its rates the costs incurred in preparing its plan and implementing the reasonable water conservation measures included in the plan (SB 1017). Any best water management practice that is included in the plan that is identified in the “Memorandum of Understanding Regarding Urban Water Conservation in California” (CUWCC, 2000) is deemed to be reasonable. The second measure requires water suppliers to give greater consideration to recycled water in their urban management plans (AB 2853).

In 1995, the Legislature enacted two additional measures. The first measure requires urban water suppliers to include, as part of their urban water management plans, a prescribed water supply and demand assessment of the reliability of their water service to their customers during normal, dry, and multiple dry water years (AB 1845). The assessment shall compare total water supply sources available to the supplier with the total projected water use over the next 20 years, in 5-year increments. It also requires the supplier to provide the water service reliability assessment to any city or county within which it provides water within 60 days of the adoption of its urban water management plan. The second measure made the following changes to the Urban Water Management Plan Act (SB 1011):

- Revised the components required to be included in the plan.
- Required urban water suppliers to update their plans at least once every five years on or before December 31 in the years ending in 5 and 0.
- Required urban water suppliers to include a prescribed water supply and demand assessment.
- Required suppliers to encourage active involvement of diverse social, cultural, and economic elements of the population within the service area prior to and during preparation of the plan.
- Required the urban water supplier, prior to adopting the plan, to make the plan available for public inspection and hold a public hearing thereon.
- Deleted the provision requiring action alleging failure to adopt a plan to be commenced within 18 months after commencement or urban water service after January 1, 1984.
- Defined “demand management” and “recycled water,” revised the definition of “plan,” and deleted the definition of “conservation.”
• Exempted suppliers who were implementing a conservation program from conducting a cost-benefit analysis of those conservation programs.

• Required the Department of Water Resources to submit a report to the Legislature summarizing the status of plans on or before December 31 in the years ending in 1 and 6.

In September of 2000, the Legislature approved AB 2552, which required urban water suppliers to submit their UWMPs to cities and counties where the water supplier provides water. The intent of this new requirement was to help ensure that city and county planning agencies have reliable water supply information on which to base growth decisions.

Additional changes approved in 2001 include AB 901, SB 221, SB 610, and SB 672. AB 901 required the UWMP to include information, relating to the water quality of source supplies and the manner in which the water quality affects water management strategies and supply reliability. This Bill required the UWMP to describe plans to supplement a water source that may not be available at a consistent level of use. SB 221 prohibited a city or county from approving a residential subdivision of more than 500 units unless the city council or the board of supervisors provides written verification from the area’s water service provider that a sufficient water supply is available for the development. SB 610 required additional information to be included as part of the UWMP for urban water supplies whose water supply includes groundwater. It required a city or county that determines that a development project is subject to the California Environmental Quality Act to identify any public water system that may supply water for the project and to request that system to prepare a specific water supply assessment. It required urban water suppliers to include in the UWMP a description of all water supply projects and programs that may be undertaken to meet total projected water use. This Bill required the DWR to take into consideration whether an urban water supplier has submitted an updated UWMP in determining eligibility for funds made available pursuant to any program administered by CADWR. SB 672 required urban water suppliers to describe in the UWMP water management tools and other options used by that agency to maximize supplies and minimize the need to import water from other regions. A copy of the current Urban Water Management Planning Act is provided in Appendix B.

There were many new requirements adopted by the State over the period 2005 to 2010, that must be included in the District’s UWMP. The following items must be included:

• 20x2020 analysis and compliance with Water Conservation Act of 2009 required of retail water suppliers.

• Water supplier must give at least 60-days advance notice to any city or county within which the supplier provides water supplies to allow opportunity for consultation on the proposed plan.

• Requires plan to include water use projections for single-family and multiple-family residential housing needed for lower income and affordable households.
• Conditions eligibility for a water management grant or loan by CADWR, SWRCB, or California Bay-Delta Authority on compliance with water demand management measures.

• Exempts projects funded by the American Recovery and Reinvestment Act of 2009 from the conditions placed on state funding for water management to urban water suppliers regarding implementation of water conservation measures that were implemented under AB 1420.

• Water suppliers that are members of the CUWCC and comply with the amended MOU, will be in compliance with the UWMP water demand management measures.

• Clarifies that "indirect potable reuse" of recycled water should be described and quantified in the plan.

• Requires urban wholesale water suppliers to include in UWMPs an assessment of present and proposed future measures, programs, and policies to achieve water use reductions.

• Grants urban water suppliers an extension for submission of UWMPs due in 2010 to July 1, 2011.

1.3.3 Recent Changes to UWMP Act

Recent changes to the UWMP include the following:

• Water suppliers are required to provide narratives describing their water demand management measures, as provided. Requires retail water suppliers to address the nature and extent of each water demand management measure implemented over the past 5 years and describe the water demand management measures that the supplier plans to implement to achieve its water use targets.

• Urban water suppliers are required to submit their 2015 plan to the CADWR by July 1, 2016.

• The UWMP, or amendments to the plan, must be submitted electronically to the CADWR.

• Requires the UWMP, or amendments to the plan, to include any standardized forms, tables, or displays specified by the CADWR.

• Requires a UWMP to quantify and report on distribution system water loss.

• Water use projections must display and account for the water savings estimated to result from adopted codes, standards, ordinances, or transportation and land use plans, when that information is available and applicable to an urban water supplier.

• Urban water suppliers must include certain energy related information, including, but not limited to, an estimate of the amount of energy used to extract or divert water supplies.

• Urban water suppliers must analyze and define water features that are artificially supplied with water, including ponds, lakes, waterfalls, and fountains, separately from swimming pools and spas.
A copy of the current Urban Water Management Planning Act is provided in Appendix B. Copies of the District’s required data tables are provided in Appendix D and E.

1.4 DISTRICT COMPLIANCE WITH UWMP ACT

1.5 PUBLIC REVIEW, ADOPTION, AND SUBMITTAL

This UWMP Update includes the following:

- Retail suppliers shall conduct a public hearing to discuss adoption, implementation, and economic impact of water use targets. (CWC, 10608.26(a))

- Notify, at least 60 days prior to the public hearing, any city or county within which the supplier provides water that the urban water supplier will be reviewing the plan and considering amendments or changes to the plan. (CWC, 10621(b))

- Each urban water supplier shall update and submit its 2015 plan to the department by July 1, 2016. (CWC, 10621(d))

- Provide supporting documentation that Water Shortage Contingency Plan has been, or will be, provided to any city or county within which it provides water, no later than 60 days after the submission of the plan to DWR. (CWC, 10635(b))

- Provide supporting documentation that the water supplier has encouraged active involvement of diverse social, cultural, and economic elements of the population within the service area prior to and during the preparation of the plan. (CWC, 10642)

- Provide supporting documentation that the urban water supplier made the plan available for public inspection, published notice of the public hearing, and held a public hearing about the plan. (CWC, 10642)

- Water supplier is to provide the time and place of the hearing to any city or county within which the supplier provides water. (CWC, 10642)

- Provide supporting documentation that the plan has been adopted as prepared or modified. (CWC, 10642)

- Provide supporting documentation that the urban water supplier has submitted this UWMP to the California State Library. (CWC, 10644(a))

- Provide supporting documentation that the urban water supplier has submitted this UWMP to any city or county within which the supplier provides water no later than 30 days after adoption. (CWC, 10644(a)(1))

- UWMP, or amendments to the UWMP, submitted to CADWR shall be submitted electronically. (CWC, 10644(a)(2))
• Provide supporting documentation that, not later than 30 days after filing a copy of its plan with the department, the supplier has or will make the plan available for public review during normal business hours. (CWC, 10645)

• Every person that becomes an urban water supplier shall adopt an urban water management plan within one year after it has become an urban water supplier. (CWC, 10620(b))

• Coordinate the preparation of its plan with other appropriate agencies in the area, including other water suppliers that share a common source, water management agencies, and relevant public agencies, to the extent practicable. (CWC, 10620(d)(2))

1.6 IMPLEMENTATION

The District implemented the following for the UWMP:

• Coordinate water planning with the following: County of Santa Barbara and Central Coast Water Authority.

• Provide a 60-day advanced notification (copy provided in Appendix C) regarding a public hearing for the UWMP Update to the County of Santa Barbara.

• Provide a copy of the Draft UWMP for public review and comment at the District’s office, 1301 Santa Ynez Ave, Carpinteria, California, 93014, during normal business hours and the District’s website (http://www.cvwd.net/).

• Adopt the UWMP at a Board Meeting on August 24, 2016. A copy of the District’s resolution adopting the UWMP is provided in Appendix C.

• Submit the UWMP to CADWR, State Library, County of Santa Barbara, and City of Carpinteria within 30 days of adoption.

• Provide a copy of the adopted UWMP for public review at the District’s office, 1301 Santa Ynez Ave, Carpinteria, California, 93014, during normal business hours within 30 days of adoption. UWMP will also be posted on the District’s website at http://www.cvwd.net/.

1.7 AUTHORIZATION

The District authorized Milner-Villa Consulting (MVC) to provide consulting services related to preparation of this UWMP Report via Letter of Agreement dated 6 November 2015.

1.8 CONTACT INFORMATION

Please direct any questions regarding this UWMP to Bob McDonald, General Manager, (805) 684-2816.
SECTION 2: SYSTEM DESCRIPTION

2.1 UWMP REQUIREMENTS

This section will include the following:

- Describe the water supplier service area. (CWC, 10631(a))
- Describe the climate of the service area of the supplier. (CWC, 10631(a))
- Indicate the current population of the service area. (CWC, 10631(a))
- Provide population projections for 2020, 2025, 2030, 2035, and 2040 (optional). (CWC, 10631(a))
- Describe other demographic factors affecting the supplier’s water management planning. (CWC, 10631(a))

2.2 LOCATION OF DISTRICT

The District is located on the coast of California 80 miles north of Los Angeles and 12 miles southeast of Santa Barbara (see Figure 2-1 for a vicinity map). The District’s service area encompasses an area extending along the south coast of the County of Santa Barbara easterly from the Toro Canyon area to the Ventura County line. See Figure 2-2 for a map of the District boundary. The Foothills of the Santa Ynez Mountains lay to the north and the ocean to the south of the valley. The District’s service area contains approximately 11,098 acres (17.3 square miles).

2.3 HISTORY OF DISTRICT

The District was established in 1941. Over time, the District has acquired three different water companies, all within the boundaries of the District, in order to provide more reliable service to the customers of the District. The first water company to be acquired was the Shepard Mesa Mutual Water Company on February 8, 1955. Subsequently, Ocean Oaks Water Company was transferred to the District on July 6, 1957. The third and largest water company to be acquired was the Carpinteria Water Company which was first started in 1919 by Frank L. Stewart. In 1922, because of increased demand for additional service, Frank L. Stewart formed a partnership with E. Stanley Atkinson which was known as the Stewart-Atkinson Water Company of Carpinteria. After a public hearing was conducted, the State of California Public Utilities Commission approved on July 22, 1924 the incorporation of the Stewart-Atkinson Water Company. The company was named the "Carpinteria Water Company”. A certificate of public convenience and necessity was granted by the State of California Public Utilities Commission on December 31, 1924, and authority to operate a public utility system was granted on March 5, 1925. The Carpinteria Water Company was serving approximately 165 customers at that time. By 1949, the Carpinteria Water Company was serving approximately 820 customers. At the time of purchase and transfer of the Carpinteria Water Company to the District on July 1, 1964, active service connections totaled approximately 1,600. (CCWA, 2011)
FIGURE 2-1
VICINITY MAP

Carpinteria Valley Water District, CA

Pacific Ocean
FIGURE 2-2
DISTRICT BOUNDARY

Carpinteria Valley Water District Boundary
City of Carpinteria
Pacific Ocean
2.4 DISTRICT FACILITIES

The District owns and operates five (5) municipal wells with a combined capacity to produce approximately 3.98 MGD. These wells are located central to the suburban section of Carpinteria. Figure 2-3 displays the CVWD facilities including general locations of wells. The District constructed a new well, Headquarters Well, and a replacement well for El Carro in the last 10 years. Both of these wells have the capability to extract as well as inject water. These wells will help meet the peak demands and provide some redundancy in the groundwater supply reliability. Additional details regarding District groundwater extractions provided in Section 4.

The District owns and operates three (3) potable water reservoirs with a combined storage capacity of approximately 10.68 AF. These reservoirs include Shepard Mesa (0.15 AF), Foothill (9 AF), and Gobernador (1.53 AF). Figure 2-3 displays the CVWD facilities including general locations of the reservoirs. Cachuma Operations and Maintenance Board (COMB) owns and operates two additional reservoirs in the area including Ortega Reservoir (60 AF) and Carpinteria Reservoir (44 AF).

The District owns and operates a total of 78.14 miles of distribution pipelines. These pipelines include concrete (51%), steel (36%), and other materials (13%). Figure 2-3 displays the general locations of the CVWD distribution facilities.

2.5 CLIMATE

Climate within the District’s service area is Mediterranean-like in character. Summers are usually dry with generally mild temperatures and the winters are cool and have light to moderate quantities of precipitation (predominantly in the form of rainfall) with cool temperatures. Annual variation in climate conditions is minimal within the District. However, unique topographic conditions in the Gobernador Canyon area of the District can lead to frost conditions for approximately 5 days per year.

The District service area is located on a narrow, moderately to gently sloping alluvial plain which extends from the base of the Santa Ynez Mountains southward to the Pacific Ocean. Natural drainage of the plain is provided by Carpinteria Creek, Franklin Creek, Santa Monica Creek, Rincon Creek, and Toro Creek. Headwaters of each of these creeks are located in the Santa Ynez Mountains.

Water from the Cachuma Project is collected from the Santa Ynez mountain watershed, which is subject to its own local climatic variations. Cachuma Project water, stored in Lake Cachuma, is a major source of surface water for the District (see Section 4 for details). Rainfall in the Santa Ynez watershed is greater than that of local patterns due to the orographic affect created by the local mountains and the offshore winds.
FIGURE 2-3
DISTRICT FACILITIES
Average daily maximum air temperature varies between 64.9 and 77.1 degrees Fahrenheit with an average of 70.8. (WRCC, 2015) Annual rainfall for the area is 18.83 inches. Annual average evapotranspiration (ETo) for the area is 43.7 inches. (CADWR, 2015) Additional temperature, precipitation, and evapotranspiration data is provided in Table 2-1.

TABLE 2-1
LOCAL CLIMATE SUMMARY

<table>
<thead>
<tr>
<th>Month</th>
<th>Average Maximum Temperature (F) (1)</th>
<th>Average Minimum Temperature (F) (1)</th>
<th>Average Precipitation (inches) (2)</th>
<th>Average Evapotranspiration (inches) (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>64.9</td>
<td>43.0</td>
<td>4.11</td>
<td>1.79</td>
</tr>
<tr>
<td>February</td>
<td>65.6</td>
<td>44.6</td>
<td>4.05</td>
<td>2.32</td>
</tr>
<tr>
<td>March</td>
<td>66.8</td>
<td>46.2</td>
<td>3.27</td>
<td>3.57</td>
</tr>
<tr>
<td>April</td>
<td>69.0</td>
<td>48.6</td>
<td>1.29</td>
<td>4.63</td>
</tr>
<tr>
<td>May</td>
<td>69.9</td>
<td>51.3</td>
<td>0.41</td>
<td>5.10</td>
</tr>
<tr>
<td>June</td>
<td>72.4</td>
<td>54.3</td>
<td>0.09</td>
<td>4.83</td>
</tr>
<tr>
<td>July</td>
<td>75.9</td>
<td>57.3</td>
<td>0.02</td>
<td>5.38</td>
</tr>
<tr>
<td>August</td>
<td>77.1</td>
<td>57.9</td>
<td>0.06</td>
<td>5.21</td>
</tr>
<tr>
<td>September</td>
<td>76.7</td>
<td>56.4</td>
<td>0.29</td>
<td>4.03</td>
</tr>
<tr>
<td>October</td>
<td>74.4</td>
<td>52.5</td>
<td>0.70</td>
<td>3.16</td>
</tr>
<tr>
<td>November</td>
<td>70.9</td>
<td>46.9</td>
<td>1.61</td>
<td>2.04</td>
</tr>
<tr>
<td>December</td>
<td>66.4</td>
<td>43.4</td>
<td>2.94</td>
<td>1.65</td>
</tr>
<tr>
<td>Annual Avg.</td>
<td>70.8</td>
<td>50.2</td>
<td>18.83</td>
<td>43.71</td>
</tr>
</tbody>
</table>

Notes:
(1) Western Region Climate Center, Santa Barbara, Station No. 047902, 2015.
(2) Data combined from Western Region Climate Center, Santa Barbara data set (1894-1948), and County of Santa Barbara, Carpinteria Fire Station data set (1949-2015).
(3) CADWR, Santa Barbara CIMIS, Station No. 107, 2015.

2.6 DEMOGRAPHIC FACTORS

2.6.1 Land Use

Land use within the District includes agriculture (3,167 acres), residential, and commercial properties (see Figure 2-4 for details). Much of the land usage within the City of Carpinteria limits is residential or commercial, with some industrial and manufacturing. Almost all the agricultural land lies outside the City limits. Land use within the District is regulated by the City within its boundaries, and by the County of Santa Barbara for the unincorporated area of the District.

Agricultural customers include approximately 3,167 acres of irrigated crops including avocados, lemons, fruit trees, and nursery operations (see Table 2-2 for details). Sprinklers are the most common method of crop irrigation.
FIGURE 2-4
DISTRICT LAND USE MAP

Source: CVWD.
TABLE 2-2
ACRES OF AGRICULTURAL CROPS IN THE DISTRICT

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avocados</td>
<td>1,849</td>
</tr>
<tr>
<td>Lemons/mixed fruit and lemons</td>
<td>207</td>
</tr>
<tr>
<td>Cherimoya/other fruit</td>
<td>185</td>
</tr>
<tr>
<td>Nursery (open)</td>
<td>415</td>
</tr>
<tr>
<td>Nursery (covered)</td>
<td>370</td>
</tr>
<tr>
<td>Field</td>
<td>141</td>
</tr>
<tr>
<td>Total</td>
<td>3,167</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2015.

2.6.2 Population

The City of Carpinteria has a water allocation program as required by the Local Coastal Plan. A water allocation is given to each new development to ensure that the available supply of water is not exceeded. The City has reached its General Plan build-out population but has the potential for approximately 250 more residential units. It is unknown at this time if the City will allow 250 more units to be developed in the future. Many of the undeveloped parcels outside the City limits are being developed as ranchettes or small farm operations. These lands will produce only a small increase in the number of housing units in the Valley.

Water service is provided to a current population within the District's service area of approximately 15,600 and a total of 4,307 service connections. Population estimates were generated from the present to 2040 and include areas outside of the City limits but within the District service area. The District estimated the population for the period 2015 to 2040 using the 2010 Census data, aerial photography, current meter connections, District surveys, and estimated population growth rate of 0.35 percent (conservative high). Table 2-3 provides a summary of the historical population for the City of Carpinteria and projected population for the District for the period 2015 to 2040 (see also Appendix D Table 3-1). Population is anticipated to be 16,400 by 2040 (conservative high). Population growth within the District is anticipated to be 1,400 persons over the next 25 years (approximately 0.35 percent per year). The City of Carpinteria General Plan identifies significant potential residential and commercial growth within the District's service area. Additional growth may occur as the result of expansion of the City of Carpinteria, redevelopment, and/or changes in the local economy. Average annual population growth rate for the whole of California for the period 2015 to 2060 is estimated to be slightly more than 0.5 percent (California Department of Finance, 2015). However, for the period 2015 to 2040, the District anticipates a population growth rate of 0.35 percent (conservatively high) for the service area.
TABLE 2-3
HISTORICAL AND PROJECTED DISTRICT POPULATION

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual City Population (1)</th>
<th>Estimated City Population (2)</th>
<th>Estimated District Population (3)</th>
<th>Average Annual Growth Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>14,194</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2010 (4)</td>
<td>13,040</td>
<td>-</td>
<td>15,141</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>-</td>
<td>13,300</td>
<td>14,993</td>
<td>0.35</td>
</tr>
<tr>
<td>2020</td>
<td>-</td>
<td>13,425</td>
<td>15,760</td>
<td>0.35</td>
</tr>
<tr>
<td>2025</td>
<td>-</td>
<td>13,550</td>
<td>15,920</td>
<td>0.35</td>
</tr>
<tr>
<td>2030</td>
<td>-</td>
<td>13,675</td>
<td>16,080</td>
<td>0.35</td>
</tr>
<tr>
<td>2035</td>
<td>-</td>
<td>13,800</td>
<td>16,240</td>
<td>0.35</td>
</tr>
<tr>
<td>2040</td>
<td>-</td>
<td>13,900</td>
<td>16,400</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Notes:
(1) Source: US Census (2010), includes only the City of Carpinteria.
(2) Source: Santa Barbara County Association of Governments (2015).
(3) Source: CVWD estimate based on US Census, aerial photography survey, current meter connections, District surveys, and estimated growth rate of 0.35 percent per year; includes City population and residents outside City limits but served by the District.
(4) US Census indicated a net population loss of approximately 1,154 City residents (2000 to 2010).

2.7 DISTRICT OPERATIONS

2.7.1 Operating Rules and Regulations

Copies of the District’s Rules and Regulations are also available upon request.

2.7.2 Water Delivery Measurements

The District utilizes positive displacement meters with an accuracy of 98.5 percent to 101.5 percent.

2.7.3 Water Rate Schedules and Billing

The District has inclining block water rates where the cost per unit of water increases with the quantity of water used for all accounts. District water rates are based on cost of providing services to all accounts. The District’s water rates provide an incentive for customers to conserve water. Customers are billed monthly for 100 percent of the volume of water used. Meter fees (2016-2017; see copy in Appendix E) range from $42.83 per month (5/8-inch) to $3,283.25 (8-inch). The commodity rate for agricultural customers is $1.91 per one hundred
cubic feet (HCF) to $2.94 per HCF depending on usage and elevation of the property. The commodity rate for all residential, commercial, and industrial customers is $3.63 per HCF to $5.19 per HCF depending on usage and elevation of the property. In addition, the District has an additional fee for capital improvement program ($16.50 to $275 per month) and drought surcharge ($4.20 to $70.00 per month). The District has the legal authority to evaluate and set rates for its customers.
SECTION 3: SYSTEM DEMANDS

3.1 UWMP REQUIREMENTS

This section will include the following:

- Quantify past, current, and projected water use, identifying the uses among water use sectors. (CWC, 10631(e)(1))
- Report the distribution system water loss for the most recent 12-month period available. (CWC, 10631(e)(3)(A))
- Include projected water use needed for lower income housing projected in the service area of the supplier. (CWC, 10631.1(a))
- Retail suppliers shall adopt a 2020 water use target using one of four methods. (CWC, 10608.20(b))
- Retail suppliers shall provide baseline daily per capita water use, urban water use target, interim urban water use target, and compliance daily per capita water use, along with the bases for determining those estimates, including references to supporting data. (CWC, 10608.20(e))
- Retail suppliers’ per capita daily water use reduction shall be no less than 5 percent of base daily per capita water use of the 5-year baseline. This does not apply if the suppliers base GPCD is at or below 100. (CWC, 10608.22)
- Retail suppliers shall meet their interim target by December 31, 2015. (CWC, 10608.24(a))
- If the retail supplier adjusts its compliance GPCD using weather normalization, economic adjustment, or extraordinary events, it shall provide the basis for, and data supporting the adjustment. (CWC, 10608.24(d)(2))
- Wholesale suppliers shall include an assessment of present and proposed future measures, programs, and policies to help their retail water suppliers achieve targeted water use reductions. (CWC, 10608.36)
- Retail suppliers shall report on their progress in meeting their water use targets. The data shall be reported using a standardized form. (CWC, 10608.40)

3.2 CURRENT DEMANDS

Currently, the District serves water to 3,217 single-family residential accounts, 348 multiple-family accounts, 216 commercial accounts, 58 industrial accounts, 62 government/institutional accounts, 50 landscape only, and 406 agricultural accounts. All of the District’s customers are metered accounts and billed monthly. Water demands for 2015 are presented in Table 3-1. According to District, total water demand in 2015 are 4,143 acre-feet (AF). The District noted that the 2010 total water demand is 3,718 AF and 2005 total water demand is 3,962 AF. The
2015 demands are 425 AF (11 percent) higher than the 2010 demands and 181 AF (4.4 percent) higher than the 2005 demands. Agriculture demands accounted for the highest category by volume used within the District at 2,130 AF (51.4 percent) in 2015. Municipal customers (including residential, commercial, industrial, institutional, and landscape uses) accounted for nearly 1,620 AF (39 percent) of the District’s 2015 total water demand. Water demands for each of the primary customer categories are summarized below.

Water demand is a function of several factors. Geographic location, topography, land use, demography, and water system characteristics (i.e., system pressures, water quality and metering of connections) all influence water usage. Water demand characteristics within the District will therefore differ from water demands of other areas in California according to these factors of influence.

Reasons for differences in water demand between local communities can be numerous and complex. Differences in per capita demand are primarily attributable to variations in outdoor demands (Vickers, 2000). Other factors may include, but are not limited to, the following: parcel size, housing density, house age, condition of plumbing, use of water conservation fixtures, conservation practices, land use, climate, water rates, local ordinances, record keeping, statistical anomalies, etc.

3.2.1 Residential Demands
In 2015, single-family residential and multiple-family residential customers used 1,161 AF (28 percent) of the total water uses. For additional details see Table 3-1; and see Appendix D Table 4-1.

3.2.2 Commercial Demands
Commercial customers accounted for 237 AF (5.7 percent) of the total 2015 water uses. For additional details see Table 3-1; and see Appendix D Table 4-1.

3.2.3 Industrial Demands
Industrial customers accounted for over 67 AF (1.6 percent) of water demands in 2015. See Table 3-2 for additional details. For additional details see Table 3-1; and see Appendix D Table 4-1.

3.2.4 Institutional/Governmental Demands
Institutional and governmental customers accounted for 105 AF (2.5 percent) of the total 2015 water uses. For additional details see Table 3-1; and see Appendix D Table 4-1.

3.2.5 Agricultural Demands
Agricultural customers accounted for over 51 percent (2,130 AF) of water demands in 2015. For additional details see Table 3-1; and see Appendix D Table 4-1. In 2010, agriculture accounted for approximately 1,582 AF (43 percent) of total water uses.
TABLE 3-1
DISTRICT WATER DEMANDS FOR 2015

<table>
<thead>
<tr>
<th>Customer Classification</th>
<th>2015 Water Demand (AF) (1)</th>
<th>2015 Water Demand (Percent of Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Residential</td>
<td>746</td>
<td>18.0</td>
</tr>
<tr>
<td>Multi-Family Residential</td>
<td>415</td>
<td>10.0</td>
</tr>
<tr>
<td>Commercial</td>
<td>237</td>
<td>5.7</td>
</tr>
<tr>
<td>Industrial</td>
<td>67</td>
<td>1.6</td>
</tr>
<tr>
<td>Institutional/Governmental</td>
<td>105</td>
<td>2.5</td>
</tr>
<tr>
<td>Landscape Irrigation</td>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>Agriculture</td>
<td>2,130</td>
<td>51.4</td>
</tr>
<tr>
<td>Water Losses</td>
<td>393</td>
<td>9.5</td>
</tr>
<tr>
<td>Total</td>
<td>4,143</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:
(1) CVWD, 2016. All values rounded.

3.2.6 Water Losses

In addition to the traditional demand sources, another component that significantly impacts the District’s water supplies is water system losses. This component is typically defined as the difference between water production and water sales. Such water losses may be due to authorized activities such as fire fighting and main flushing. In addition, water losses may be due to unauthorized sources such as leakage, illegal connections, theft, and inaccurate flow meters. Estimated total water loss within the District was approximately 393 AF (9.5 percent; water losses and non-revenue water) of the total water demand during 2015. A copy of the District’s water audit summary for fiscal year 2014-2015 is provided in Appendix N. Apparent water losses may also be caused by time of metering issues. Much of the District’s water use is metered by external agencies. These agencies may meter based on different times and at location outside of the District’s service area.

The District’s estimated unaccounted-for water was slightly higher than estimates from USEPA Region 9 which indicate an average of 6.4 percent for total water loss. California Department of Water Resources, Office of Water Conservation uses approximately 9.5 percent for long-range planning of municipal water production. The District may consider additional measures to reduce water loss within the distribution system. These measures may include additional water main replacement, meter replacement, and meter exchange. The District is partnering with agencies that treat and transport water in order to improve time of metering issues that contribute to apparent water losses.
3.2.7 Current Demands for-Low Income Households

One of the requirements of the UWMP Act is the evaluation of demands for lower income households. (CWC, 10631.1) According to the California Health and Safety Code, Section 50079.5 (a), “Lower income households” means persons and families whose income does not exceed the qualifying limits for lower income families... In the event the federal standards are discontinued, the department shall, by regulation, establish income limits for lower income households for all geographic areas of the state at 80 percent of area median income, adjusted for family size and revised annually.”

The District does not track water demand for lower-income households. However, water demands for lower income households are included in the total water demands for single-family residential and multiple-family residential as summarized in Section 3.2.1 and Table 3-1. The District provides water to all customers to meet customer demands including water necessary for lower income single-family households and multiple-family households. The District does provide qualifying low income customers with a 20 percent reduction in the monthly service charge component of their water bill.

3.3 FUTURE WATER DEMANDS

Projected water use estimates are based on the small increases to the District’s customer base. Section 2.6 summarized anticipated population growth within the District. Population growth within the District is anticipated to be 1,400 persons over the next 20 years (approximately 0.35 percent per year). All future new accounts will be metered and billed via volume-based rates. Total projected water demands will range from approximately 4,148 AF in 2020 to 4,205 AF in 2040. See Table 3-2 for further details (see also Appendix D Table 4-2). Projected water demands for each of the primary customer categories are summarized below.

3.3.1 Residential Demands

Projected single-family and multiple-family residential demands will account for approximately 1,245 AF (30 percent) of the District total water demand by 2040. See Table 3-2 (see also Appendix D Table 4-2) for details of estimated water demands through 2040.

3.3.2 Commercial Demands

Projected commercial demands will account for approximately 225 AF (5.4 percent) of the District total water demand by 2040. See Table 3-2 (see also Appendix D Table 4-2) for details of future estimated demands through 2040.

3.3.3 Industrial Demands

Projected industrial demands will account for approximately 70 AF (1.7 percent) of the District total water demand by 2040. See Table 3-2 (see also Appendix D Table 4-2) for details of estimated water demands through 2040.
3.3.4 Institutional/Governmental Demands

Projected institutional and institutional demands will account for approximately 120 AF (2.9 percent) of the District total water demand by 2040. See Table 3-2 (see also Appendix D Table 4-2) for details of estimated water demands through 2040.

TABLE 3-2

PROJECTED DISTRICT TOTAL WATER DEMANDS 2020-2040

<table>
<thead>
<tr>
<th>Customer Classification</th>
<th>2020 (AFY)</th>
<th>2025 (AFY)</th>
<th>2030 (AFY)</th>
<th>2035 (AFY)</th>
<th>2040 (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Residential</td>
<td>780</td>
<td>789</td>
<td>797</td>
<td>806</td>
<td>814</td>
</tr>
<tr>
<td>Multi Family Residential</td>
<td>413</td>
<td>418</td>
<td>422</td>
<td>427</td>
<td>431</td>
</tr>
<tr>
<td>Commercial</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Industrial</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Institutional/Governmental</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Landscape Irrigation (3)</td>
<td>50</td>
<td>51</td>
<td>53</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>Agricultural</td>
<td>2,090</td>
<td>2,090</td>
<td>2,090</td>
<td>2,090</td>
<td>2,090</td>
</tr>
<tr>
<td>Water Losses (4)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
</tbody>
</table>

Notes:
(1) CVWD, 2016. All values rounded. Normal water-year.
(2) Projected demands based on projected development distributed equally over the period 2020 to 2040.
(3) For planning purposes, existing landscape areas with irrigation will remain on potable water until such time that areas are converted to recycled water.
(4) Includes existing water losses and losses within potential new developments. Water losses for new developments estimated to be 5 percent.

3.3.5 Agricultural Demands

Projected agricultural demands will account for approximately 2,090 AF (49.7 percent) of the District total water demand by 2040. See Table 3-2 (see also Appendix D Table 4-2) for details of estimated water demands through 2040.

3.3.6 Water Losses

For the purpose of this UWMP, total water loss is projected to be 400 AFY (9.5 percent) of District total water demands for 2020 to 2040 (see Table 3-2 for details; also Appendix D Table 4-2). However, the District should consider alternatives to reduce this value to less than 5 percent. The District should consider additional measures to reduce water losses to less than 5 percent. These measures may include additional water main replacement, meter
replacement/exchange, water system audits, and metered use by contractors (see Section 7 for additional details).

3.3.7 Future Demands for Low Income Households

The UWMP Act includes the evaluation of demands for low income households. (CWC, 10631.1) Future low income housing is incorporated into population projections identified in Table 2-3 and water demand projections identified in Table 3-2. The District does not track water demand for lower-income households. However, water demands for lower-income households are included in the total water demands projected for single-family residential and multiple-family residential as summarized in Table 3-2. The District has sufficient water supplies to accommodate the increase in water demand associated with construction of potential new single-family and multiple-family housing units for lower-income residents.

3.4 WATER CONSERVATION ACT OF 2009

In February 2008, Governor Arnold Schwarzenegger introduced a seven-part comprehensive plan for improving the Sacramento-San Joaquin Delta. A key component of this plan was a goal to achieve a 20 percent reduction in per capita water use statewide by the year 2020 (also known as the 20x2020 target). The Governor’s inclusion of water conservation in the Delta plan emphasizes the importance of water conservation in reducing demand on the Delta and in reducing demand on the overall California water supply. In response to Schwarzenegger’s call for statewide per capita savings, the CADWR prepared a 20x2020 Water Conservation Plan (CADWR, 2010). The Water Conservation Plan developed estimates of statewide and regional baseline per capita water use and outlined recommendations to the Governor on how a statewide per capita water use reduction plan could be implemented.

In November 2009, SB X7-7, The Water Conservation Act of 2009 (CWC, 10608-10608.44), was signed into law as part of a comprehensive water legislation package. The Water Conservation Act addresses both urban and agricultural water conservation. The urban provisions reflect the approach taken in the 20x2020 Water Conservation Plan. The legislation sets a goal of achieving a 20 percent statewide reduction in urban per capita water use and directs urban retail water suppliers to set 2020 urban water use targets. This SB X7-7 legislation requires urban retail water suppliers to summarize the calculation of this water use target in the UWMP. Details of the District’s compliance are provided below.

3.4.1 Baseline Water Use

Water suppliers must define a 10-year base period (or 15-year) (also known as baseline) for water use that will be used to develop their target levels of per capita water use. Water suppliers must also calculate water use for a 5-year baseline period, and use that value to determine a minimum required reduction in water use by 2020. The longer baseline period applies to a water supplier that meets at least 10 percent of its 2008 measured-retail water demand through recycled water. Methodology 3: Base Daily Per Capita Water Use describes the calculations. The District chose the 10-year baseline period 2001 to 2010, and the 5-year baseline period 2003 to 2007.
3.4.2 Water Use Targets

An urban retail water supplier, as defined above, must set a year 2020 water use target and a 2015 interim target using one of four methods. (CWC, 10608.20(a)(1)) The 2015 interim target and 2020 water use target will be calculated using one of the following four methods:

- Method 1: Eighty percent of the water supplier’s baseline per capita water use.
- Method 2: Per capita daily water use estimated using the sum of performance standards applied to indoor residential use; landscaped area water use; and CII uses.
- Method 3: Ninety-five percent of the applicable state hydrologic region target (Central Coast – see Figure 3-1) as stated in the 20x2020 Water Conservation Plan. The District selected this method for compliance.
- Method 4: Urban water use target is calculated by estimating the baseline per capita use and subtracting total water savings (savings from metering, indoor residential, commercial, industrial, institutional, landscape, and water loss).

The target may need to be adjusted further to achieve a minimum reduction in water use regardless of the target method (this is explained in Methodology 3). The Water Code directs that water suppliers must compare their actual water use in 2020 with their calculated targets to assess compliance. In addition, water suppliers will report interim compliance in 2015 as compared to an interim target (generally halfway between the baseline water use and the 2020 target level). The years 2015 and 2020 are referred to in the methodologies as compliance years. All baseline, target, and compliance-year water use estimates must be calculated and reported in gallons per capita per day (GPCD). Water suppliers have some flexibility in setting and revising water use targets:

A water supplier may set its water use target and comply individually, or as part of a regional alliance. The District chose to comply as an individual water agency. A water supplier may revise its water use target in its 2015 or 2020 urban water management plan or in an amended plan. A water supplier may change the method it uses to set its water use target and report it in its 2015 urban water management plan. Urban water suppliers are not permitted to change target methods after they have submitted their 2015 UWMP.

3.4.3 Data Reporting

CADWR will collect data pertaining to urban water use targets through three documents: (1) through the individual supplier UWMP; (2) through the regional UWMP; and (3) through regional alliance reports. Water suppliers that comply individually must report the following data in their UWMP (applicable UWMP dates are included in parentheses).

FIGURE 3-1
CENTRAL COAST HYDROLOGIC BASIN

Source: DWR.

Carpinteria Basin
- Compliance Year Gross Water Use (2015 and 2020) and Service Area Population (2010, 2015, 2020)

3.4.4 District Compliance Summary

Compliance with the California Water Conservation Act of 2009 includes the following:
- Baseline period - 10-year: 2001-2010 (see Appendix E Table 1)
- Baseline period - 5-year: 2003-2007 (see Appendix E Table 1)
- Population 10-year range (2001-2010): 15,143 to 16,115 (see Appendix E Table 3)
- Population compliance year 2015: 14,993 (see Appendix E Table 3)
- Gross water use 10-year average (2001-2010): 2,211 acre-feet (see Appendix E Table 4)
- Gross water use compliance year 2015: 2,053 (see Appendix E Table 4)
- Baseline per capita use 10-year avg. (2001-2010): 127 gpcd (see Appendix E Table 5)
- Baseline per capita use 5-year avg. (2003-2007): 136 gpcd (see Appendix E Table 5)
- District’s gallons per capita per day compliance year 2015: 122 gpcd (see Appendix E Table 5)
- Target Method: Method 3 – Hydrologic Region (see Appendix E Tables 7)
- Method 3 – Central Coast Hydrologic Region: 123 gpcd (see Appendix E Table 7E)
- Hydrologic Region (Central Coast): 95 percent target of 117 gpcd (see Appendix E Table 7E)
- District interim 2015 water use target: 122 gpcd (see Appendix E Table 8)
- District 2020 water use target: 117 gpcd (see Appendix E Table 7F)
- District’s actual water use compliance year 2015: 122 gpcd (see Appendix E Table 9)
- Did District meet 20X2020 2015 Interim Target gpcd? Yes.

See Appendix D Tables 5-1 and 5-2 and Appendix E Tables 1 to 9 for additional details.
SECTION 4: SYSTEM SUPPLIES

4.1 UWMP REQUIREMENTS

This section will include the following:

- Identify and quantify the existing and planned sources of water available for 2015, 2020, 2025, 2030, 2035, and 2040 (optional). (CWC, 10631(b))

- Indicate whether groundwater is an existing or planned source of water available to the supplier. (CWC, 10631(b))

- Indicate whether a groundwater management plan has been adopted by the water supplier or if there is any other specific authorization for groundwater management. Include a copy of the plan or authorization. (CWC, 10631(b)(1))

- Describe the groundwater basin. (CWC, 10631(b)(2))

- Indicate if the basin has been adjudicated and include a copy of the court order or decree and a description of the amount of water the supplier has the legal right to pump. (CWC, 10631(b)(2))

- For unadjudicated basins, indicate whether or not the department has identified the basin as overdrafted, or projected to become overdrafted. Describe efforts by the supplier to eliminate the long-term overdraft condition. (CWC, 10631(b)(2))

- Provide a detailed description and analysis of the location, amount, and sufficiency of groundwater pumped by the urban water supplier for the past five years. (CWC, 10631(b)(3))

- Provide a detailed description and analysis of the amount and location of groundwater that is projected to be pumped. (CWC, 10631(b)(4))

- Describe the opportunities for exchanges or transfers of water on a short-term or long-term basis. (CWC, 10631(d))

- Describe the expected future water supply projects and programs that may be undertaken by the water supplier to address water supply reliability in average, single-dry, and multiple-dry years. (CWC, 10631(g))

- Describe desalinated water project opportunities for long-term supply. (CWC, 10631(h))

- Retail suppliers will include documentation that they have provided their wholesale supplier(s) – if any - with water use projections from that source. (CWC, 10631(j))

- Wholesale suppliers will include documentation that they have provided their urban water suppliers with identification and quantification of the existing and planned sources of water available from the wholesale to the urban supplier during various water year types. (CWC, 10631(j))
For wastewater and recycled water, coordinate with local water, wastewater, groundwater, and planning agencies that operate within the supplier's service area. (CWC, 10633)

Describe the wastewater collection and treatment systems in the supplier's service area. Include quantification of the amount of wastewater collected and treated and the methods of wastewater disposal. (CWC, 10633(a))

Describe the quantity of treated wastewater that meets recycled water standards, is being discharged, and is otherwise available for use in a recycled water project. (CWC, 10633(b))

Describe the recycled water currently being used in the supplier's service area. (CWC, 10633(c))

Describe and quantify the potential uses of recycled water and provide a determination of the technical and economic feasibility of those uses. (CWC, 10633(d))

Describe the projected use of recycled water within the supplier's service area at the end of 5, 10, 15, and 20 years, and a description of the actual use of recycled water in comparison to uses previously projected. (CWC, 10633(e))

Describe the actions which may be taken to encourage the use of recycled water and the projected results of these actions in terms of acre-feet of recycled water used per year. (CWC, 10633(f))

Provide a plan for optimizing the use of recycled water in the supplier's service area. (CWC, 10633(g))

4.2 CURRENT WATER SUPPLIES

CVWD has a balanced water supply portfolio with surface water supplies from the Cachuma Project, surface water from the State Water Project, and groundwater from the Carpinteria Groundwater Basin. Potential maximum operational yield of groundwater by the District is 3,000 AFY, while the long-term average will be approximately 1,400 AFY. The District's maximum local surface water allocation from the Cachuma Project is currently 2,813 AFY, while the long-term average will be approximately 1,970 AFY. Maximum allocation from the SWP is 2,200 AFY (including 200 AF of drought buffer), while the long-term average will be approximately 1,250 AFY. Each of these water supplies is described in detail in subsequent sections.

Table 4-1 summarizes the water supplies available in 2015 to meet demands within the CVWD service area (also see Appendix D, Table 6-8). Actual total District deliveries in 2015 were 3,887 AF, which included 2,943 AF (71 percent) from District wells, 468 AF (11 percent) from the Cachuma project, and 490 AF (12 percent) from SWP water. In addition to these primary supplies, the CVWD will periodically purchase water from or exchange water with neighboring water purveyors, such as the Santa Ynez River Water Conservation District and Santa Ynez Improvement District No. 1 (ID #1). The District received 246 AF (6 percent) in 2015 in an exchange agreement with ID #1.
For the period 2011 to 2015, local groundwater provided approximately 33 percent of the average annual water supply, while the Cachuma Project provided approximately 52 percent, and SWP water provided approximately 15 percent over the same period.

TABLE 4-1

DISTRICT DELIVERED WATER SUPPLIES FOR 2015

<table>
<thead>
<tr>
<th>Water Supplies</th>
<th>2015 Water Supplies (AFY)</th>
<th>2015 Water Supplies (Percent of Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>2,943</td>
<td>71</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>468</td>
<td>11</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>490</td>
<td>12</td>
</tr>
<tr>
<td>Recycled Water (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desalination</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transfers or Exchanges In/Out (5)</td>
<td>246</td>
<td>6</td>
</tr>
<tr>
<td>Other (6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4,147</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Conservative estimate of long-term average for District pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; annual average District groundwater pumping is approximately 1,500 AFY (1984-2015); District anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)
(2) District’s current maximum allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) District’s current maximum allocation is 2,200 AFY (includes 200 AFY drought buffer program). However, the District understands that future deliveries will be less than the maximum allocation.
(4) District is currently evaluating potential long-term use of recycled water (CVWD, 2015).
(5) Exchange of SWP water for Cachuma Project water with Santa Ynez Improvement District #1.
(6) District has banked and utilized 1,000 AFY of State Water Project water. District anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)

4.2.1 Local Groundwater

The CVWD extracts water from the Carpinteria Groundwater Basin. The District overlays the Carpinteria Groundwater Basin (CADWR Basin No. 3-18), a relatively large groundwater aquifer, that extends from beyond the Ventura County line on the east, to Toro Canyon on the west, from the foothills of Santa Ynez Mountains to the north, and extending offshore to the southwest for over a mile. Figure 4-1 displays the regional groundwater basins (Carpinteria Basin is located in the lower right). Figure 4-2 displays the Carpinteria Groundwater Basin including areas of Storage Unit No. 1 and Storage Unit No. 2. Figure 4-3 displays the recharge
area and confined area of the Carpinteria Basin. **Figure 4-4** provides a cross section of the Carpinteria Groundwater Basin from ocean (left) to mountains (right), and note the multiple water bearing zones. The Basin includes approximately 16.6 square miles of surface area.

The Basin is divided by the Rincon Creek fault into two storage units; storage Unit No. 1 is the superior unit in both storage quality and storage capacity. Total storage in the aquifer is estimated to be approximately 700,000 AF (CVWD, 1986). However, usable groundwater storage capacity is an important point to understand because it determines how much groundwater can be stored during wet periods for use during droughts. In a coastal basin, conceptually it is the volume of water stored in a basin between the maximum water-level surface and the lowest water-level surface that could be reached without initiating seawater intrusion. Minimum desirable water levels are difficult to define, because water levels near the coast need to remain consistently above sea level to prevent seawater intrusion, whereas inland water levels can safely be drawn down below sea level on a transient basis. Nonetheless, it is common practice to use as a first-approximation estimate the difference between the maximum historical water-level surface and a uniform plane at sea level to define usable groundwater storage capacity.

For the Carpinteria Groundwater Basin, usable groundwater storage capacity was estimated by calculating the volume of water stored above sea level based on Spring 1998 water-level contours (the historical Basin high) for Storage Unit 1. Usable storage for the Basin recharge area was estimated at 38,926 AF, while the usable storage in the confined area was estimated at 29 AF. Thus, total usable area was estimated to be nearly 39,000 AF. (Marks, 2015)

Basin sustainable-yield is defined as the amount of groundwater that can be continuously withdrawn from a basin on a long-term average annual basis without adverse impact. (CADWR, 2003) Estimated sustainable-yield of the Carpinteria Basin Unit No. 1 is approximately 4,000 AFY (CVWD, 2012). It is not anticipated that CVWD and the private well owners would operate above the Basin sustainable-yield on a long-term basis without implementing efforts to replenish the Basin.

Groundwater rights in the Basin have not been adjudicated. The District under the authority of State Assembly Bill 3030 adopted a Groundwater Management Plan in order to establish its role as groundwater manager for the Carpinteria Groundwater Basin. This Plan was adopted on August 14, 1996 by the District’s Board of Directors (CVWD, 1996) and provides direction for the District as the managing entity for the Carpinteria Groundwater Basin. Elements of the Plan include; water level & quality monitoring, sanitary seal retrofit program, abandoned well destruction program, educational goals, and a well inventory database. A copy of this Plan is provided in **Appendix H**.
FIGURE 4-1
REGIONAL GROUNDWATER BASINS

Source: County of Santa Barbara
FIGURE 4-2
CARPINTERIA GROUNDWATER BASIN

Legend
- Doulton Tunnel
- Highways and Major Roads
- County and City Streets
- Water Reservoirs
- Pacific Ocean
- Santa Barbara - Ventura County Line
- Creeks

Source: County of Santa Barbara
FIGURE 4-3
CONFINED AND RECHARGE AREAS

Source: CVWD, 2012
FIGURE 4-4
CROSS-SECTION OF CARPINTERIA GROUNDWATER BASIN

Source: CVWD, 2012
California Department of Water Resources (CADWR) in Bulletin 118 (CADWR, 2003) stated that the Carpinteria Groundwater Basin, Basin Number 3-18, was nearly at the high levels seen in 1979 in which artesian conditions existed at many wells. No projections were made by CADWR on the future storage of the Carpinteria basin; however, basin pumping has not approached the estimated safe yield since 1990. It is not anticipated that the District will operate on a long-term basis above the Basin sustainable-yield without implementing a means to replenish the Basin.

As previously noted, the District operates 5 municipal wells (see Section 2). The District owns and operates five (5) municipal wells with a combined capacity to produce approximately 5.62 MGD. Table 4-2 provides a summary of the District’s wells. These wells are located central to the suburban section of Carpinteria. Figure 2-1 displays the CVWD facilities including general locations of wells.

TABLE 4-2
DISTRICT GROUNDWATER FACILITIES

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Status</th>
<th>Typical Capacity (gallons/min)</th>
<th>Average Production (MG/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Carro #2 Well</td>
<td>Active</td>
<td>1,200</td>
<td>1.10</td>
</tr>
<tr>
<td>High School Well</td>
<td>Inactive</td>
<td>300</td>
<td>0.00</td>
</tr>
<tr>
<td>Headquarters Well</td>
<td>Active</td>
<td>1,400</td>
<td>2.80</td>
</tr>
<tr>
<td>Lyon Well</td>
<td>Standby</td>
<td>600</td>
<td>0.00</td>
</tr>
<tr>
<td>Smillie Well</td>
<td>Active</td>
<td>400</td>
<td>0.44</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>3,900</td>
<td>4.34</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.

Total pumping within the Carpinteria Basin by CVWD and private owners has averaged nearly 4,210 AFY from 2011 to 2015 (see Table 4-3 for details; also see Appendix D, Table 6-1). District-only pumping averaged approximately 1,446 AFY (34 percent of total pumping within the Basin; 32 percent of District water supplies) from 2011 to 2015, and 1,470 AFY for the period 1984 to 2015. (CVWD, 2016) Maximum recorded pumping by CVWD over the period 1984 to 2015 is 3,508 AF (1990). Maximum recorded total pumping within the District (including CVWD and private pumpers) during the period 1984 to 2015 is 5,541 AF (2015). This record pumping was likely due to a combination of statewide drought, reduced surface water deliveries, and reduced local precipitation.

Table 4-3 also indicates that District pumping ranged from 312 AF in 2013 to 2,943 AF in 2015 (6 percent to 71 percent of total District water supplies, respectively) for the period 2011 to 2015.
In Table 4-3, the percentage of annual water supply refers to the percent of groundwater pumped compared to the total amount of District water supplies including surface water and groundwater sources.

TABLE 4-3
CARPINTERIA GROUNDWATER BASIN TOTAL PUMPING 2011-2015

<table>
<thead>
<tr>
<th>Year</th>
<th>District Pumping (AFY)</th>
<th>Percentage of Total Pumping</th>
<th>Percentage of Annual Water Supplies</th>
<th>Private Pumping (AFY)</th>
<th>Percentage of Total Pumping</th>
<th>Total Basin Pumping (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1,365</td>
<td>36</td>
<td>34</td>
<td>2,428</td>
<td>64</td>
<td>3,793</td>
</tr>
<tr>
<td>2012</td>
<td>1,174</td>
<td>31</td>
<td>26</td>
<td>2,564</td>
<td>69</td>
<td>3,738</td>
</tr>
<tr>
<td>2013</td>
<td>312</td>
<td>9</td>
<td>6</td>
<td>3,060</td>
<td>91</td>
<td>3,372</td>
</tr>
<tr>
<td>2014</td>
<td>1,434</td>
<td>31</td>
<td>32</td>
<td>3,168</td>
<td>69</td>
<td>4,602</td>
</tr>
<tr>
<td>2015 (1)</td>
<td>2,943</td>
<td>53</td>
<td>71</td>
<td>2,598</td>
<td>47</td>
<td>5,541</td>
</tr>
<tr>
<td>Annual Average</td>
<td>1,446</td>
<td>34</td>
<td>32</td>
<td>2,764</td>
<td>66</td>
<td>4,210</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Private pumping for 2015 is not available at the present time. Estimated value of private pumping based on most recent 10-year average (2005-2014).

Private pumping averaged 2,764 AFY (66 percent of total pumping within the Basin) over the period 2011 to 2015 (see Table 4-3), and 2,270 AFY for the period 1984 to 2015. (CVWD, 2016) Maximum recorded pumping by private pumpers over the period 1984 to 2015 is 3,168 AF (2014). Pumping via private wells occurs throughout the Basin with a high concentration of large pumpers north of Foothill Road for primarily agricultural uses. Estimates for private groundwater extraction are derived from land use analyses by CVWD since there was little measured water use data (CVWD, 2016). In order to manage this component of local groundwater use an estimate using crop types and water demand factors is done each year to estimate the private pumping in the basin. Additionally, levels are monitored every 2 months at various wells located throughout the Basin.

4.2.2 Cachuma Project

The District receives surface water supplies from the Cachuma Project and State Water Project (SWP; see Section 4.2.3). Each of these water supply sources is summarized below. **Table 4-4** summarizes the surface water supplies received by the District for the period 2011 to 2015. Over the period 2011 to 2015, the District received an annual average of 2,977 AFY (68 percent of District’s water supplies) from these sources.
TABLE 4-4
DISTRICT SURFACE WATER DELIVERIES 2011-2015

<table>
<thead>
<tr>
<th>Year</th>
<th>Cachuma Project (AFY)</th>
<th>Percentage Annual Water Supply</th>
<th>State Water Project (AFY) (1)</th>
<th>Percentage of Annual Water Supply</th>
<th>Total Surface Water Deliveries (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2,172</td>
<td>56</td>
<td>501</td>
<td>12</td>
<td>2,673</td>
</tr>
<tr>
<td>2012</td>
<td>2,923</td>
<td>65</td>
<td>433</td>
<td>10</td>
<td>3,356</td>
</tr>
<tr>
<td>2013</td>
<td>3,697</td>
<td>76</td>
<td>862</td>
<td>18</td>
<td>4,559</td>
</tr>
<tr>
<td>2014</td>
<td>2,198</td>
<td>49</td>
<td>891</td>
<td>20</td>
<td>3,089</td>
</tr>
<tr>
<td>2015</td>
<td>468</td>
<td>11</td>
<td>736</td>
<td>18</td>
<td>1,204</td>
</tr>
<tr>
<td>Annual Average</td>
<td>2,292</td>
<td>52</td>
<td>685</td>
<td>16</td>
<td>2,977</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Includes water exchanged with ID #1.

The District receives water from the Cachuma Project (local surface water) which stores water in Lake Cachuma within the Santa Ynez River watershed in Santa Barbara County. Annual average flow of the Santa Ynez River is approximately 66,000 acre-feet. The Santa Ynez River watershed and the South Coast area are characterized by a short rainy season in the winter and a long dry season in the summer. The region is from time to time subject to strong storms off the Pacific, consequently, rainfall can vary widely. The Cachuma Project was constructed by the U.S. Bureau of Reclamation (Bureau) in the early 1950s.

Principal features of the Cachuma Project are Lake Cachuma (see Figure 4-5), Bradbury Dam (see Figure 4-6), Tecolote Tunnel, and South Coast Conduit (SCC) and related distribution systems. Lake Cachuma includes a surface area of approximately 3,200-acres, 42 miles of coastline, and approximately 196,000 acre feet of storage. When finished, the Bradbury Dam was a zoned earthfill structure that rose 206 feet above the stream bed with a crest length of 2,975 feet (see Figure 4-6). Approximately 6,700,000 cubic yards of earthfill were used in its construction. The spillway section is concrete-lined, with four 50 foot by 30 foot radial gates, and has a capacity of 161,000 cubic feet per second (cf/s). Beneath the dam is a 7-foot horseshoe tunnel containing the controlled outlet works, which consist of the concrete-lined tunnel through which two 30-inch, hollow-jet valves and one 10-inch butterfly valve pass non-flood flows of the Santa Ynez River to users downstream of the dam.

Water diverted from Lake Cachuma passes through the Tecolote Tunnel, which brings water through the Santa Ynez Mountains to the SCC. The SCC facilities include a steel distribution pipeline that has lateral pipelines bringing water to four regulating reservoirs; Glen Anne Dam and Reservoir, Lauro Dam and Reservoir, Ortega Dam and Reservoir, and Carpinteria Reservoir.
Tecolote Tunnel, SCC, and the regulating reservoir facilities are operated by the Cachuma Operation and Maintenance Board (COMB). The COMB Board consists of five Member Units, of which CVWD is one. CVWD has a contractual agreement with COMB for delivery of its Cachuma Project water. Surface water stored in Lake Cachuma is treated at the Cater Water Treatment Plant (WTP), before being conveyed to CVWD. The Cater WTP is owned and operated by the City of Santa Barbara and has a capacity to treat 37 MGD.

FIGURE 4-5
PHOTO - LAKE CACHUMA, SANTA BARBARA COUNTY

The Lake’s storage capacity is approximately 196,000 acre feet. The total annual allocation for all member agencies is 25,814 acre feet, set collectively by the Cachuma member agency managers. This number is based on the present understanding of the lake volume, fish and downstream water rights releases, and drought planning. Storage capacity within Lake Cachuma will likely decrease slightly over time due to silt loading. Additionally, releases for fish, environment, and long-term drought planning may change over time which may significantly affect total allotments for Cachuma Project member agencies.

The allotments between the Cachuma member agencies were decided by the member agencies to be a certain percentage of the annual allotment. These percentage values were written into the original Cachuma Contract. Each agency has a contractual right to their percentage of the annual allotment. The current annual yield, 25,814 AFY, was determined prior to the last USBR contract renewal in 1995 and written into the Cachuma Contract. This means, from a contract
standpoint, that each member has entitlement to a fixed amount of water. Currently, the District's maximum allocation is 2,813 AFY (see Table 4-1).

However, during the last five years drought conditions have been significantly severe causing the member units to adjust the annual water withdrawals down to extend water supplies in Cachuma. Currently member units took a zero allocation for WY 2016 and expect to take a reduced allocating for WY 2017. Decision making about these changes is done by the member agency in coordination with the project owner, USBRCOMB implements the changes as directed by the member units. Lake supply planning occurs at an operational level and relies on the member agencies voluntary cooperation. CVWD’s planning principles and water supply goals are representative of the other member agencies planning principles and goals. That principle being that CVWD uses the resource responsibly with the goal to sustain it for indefinite future beneficial use for all of the member units.

Water stored in Lake Cachuma is also used to maintain and improve stream conditions in the Santa Ynez River downstream of the Bradbury Dam, in addition to providing water to member units. Water releases for fish from Bradbury Dam have occurred since 1993, with additional water releases from Lake Cachuma used to fulfill groundwater rights agreements held by the Bureau. Effects of future water rights decisions on Cachuma yield have not been estimated by the Bureau or any other agency in Santa Barbara County (CVWD, 2005). Lake Cachuma occasionally spills at Bradbury Dam, on average about every three years. Spill water goes toward the ocean, and is used for river recharge, habitat and sediment management, and historically has not been available to the Cachuma Member Units, except for Santa Ynez ID No. 1. During a spill
event the South Coast Member Agencies have the opportunity to take delivery of “surplus” water that is not charged to the agencies entitlement as long as the spill event is occurring.

When full, Lake Cachuma provides the member units with 5 to 6 years of water supply conditions at an annual consumption of approximately 27,000 AF in dry conditions. Other competing interests for water stored in Lake Cachuma include fish habitat and downstream water rights. In the event that lake levels are drawn down to less than 100,000 AF, the member units begin cutting back allocations by 20 percent each year in an effort to preserve the water supply. In normal years, more than half of CVWD’s water supply comes from the Cachuma Project. The District’s current maximum annual allocation for water from the Cachuma Project is 2,813 AFY.

However, the District’s Cachuma Project annual allocation could decrease in the future due to a number of factors including but not limited to the following: sedimentation which reduces reservoir storage capacity, water rights, fish flow releases, and hydrologic conditions. Sedimentation rates in Lake Cachuma are estimated to average 410 AFY; a rate that is expected to increase by 170 AFY (total of 580 AFY) by 2021 (CVWD, 2005; personal communication, Jim Stubchaer, June 2005). The Cachuma dry water-year supply can be as low as 0 percent. For planning purposes, CVWD assumes an overall 70 percent delivery (i.e., 30 percent reduction) in Cachuma supplies from 2015 to 2040, reducing the CVWD allocation to approximately 1,970 AFY. (McDonald, 2015)

The District purchased an annual average of 2,292 AF from the Cachuma Project over the period 2011 to 2015. This amount represents 52 percent of the District's total water supplies. Table 4-4 summarizes the Cachuma Project supplies received by the District for the period 2011 to 2015.

4.2.3 State Water Project

The SWP is the largest state-built, multi-purpose water project in the country. It was authorized by the California State Legislature in 1959, with the construction of most initial facilities completed by 1973. The SWP is owned by the State of California and operated by the CADWR. The primary purpose of the SWP is to deliver water to 29 urban and agricultural water suppliers in Northern California, San Francisco Bay Area, San Joaquin Valley, Central Coast, and Southern California, including 20 million urban users and 750,000 acres of farmland. Of the contracted water supply, approximately 70 percent goes to urban users and 30 percent goes to agricultural users.

SWP facilities originate in northern California at Lake Oroville on the Feather River. Figure 4-7 illustrates the location of major SWP facilities. Storage released from Lake Oroville flows into the Feather River, goes downstream to its confluence with the Sacramento River, and then travels into the Sacramento-San Joaquin River Delta (Delta). Water is pumped from the Delta region to contractors in areas north and south of the San Francisco Bay and south of the Delta. SWP deliveries consist solely of untreated water. The SWP system currently consists of 700 miles of canals and pipelines, 33 storage facilities, 21 reservoirs and lakes, 5 hydro-electric power plants, 4 pumping-generating plants, and 20 pumping plants. (CADWR, 2013a)
While some SWP supplies are pumped from the northern Delta into the North Bay Aqueduct, the vast majority of SWP supplies are pumped from the southern Delta into the 444-mile-long California Aqueduct. The California Aqueduct conveys water along the west side of the San Joaquin Valley to Edmonston Pumping Plant, where water is pumped over the Tehachapi Mountains and the aqueduct then divides into the East and West Branches. In addition to delivering water to its contractors, the SWP is operated to improve water quality in the Bay-Delta region, control flood waters, provide recreation, power generation, and environmental enhancement.

The SWP’s Coastal Branch serves the San Luis Obispo and Santa Barbara counties. The Central Coast Water Authority (CCWA) was formed to finance, construct, manage, and operate the 42-mile extension of the SWP pipeline from Vandenberg to Lake Cachuma (see Figure 4-8). CCWA contracts with the Santa Barbara County Flood Control and Water Conservation District (SBCFC and WCD) for SWP water. The SBCFC and WCD is a SWP Contractor, and has a SWP allocation of 45,486 AFY divided to 14 Allocation Holders. CVWD contracts directly with CCWA for its SWP allocation. Initially, the District sought an allocation of 2,700 AFY that was later scaled back to 2,000 AFY.

The District’s allocation of 2,000 AFY was determined in 1991 when citizens within CVWD, along with the other Central Coast water agencies, voted to participate in the SWP. A drought buffer of 200 AFY was added later for a total SWP allocation of 2,200 AFY. Estimates to support that level of allocation were based on the 1987 through 1991 drought conditions, and the rate of growth in the region at the time.

The CADWR "State Water Project Delivery Reliability Report" (Reliability Report) provides SWP contractors an assessment of the reliability of the SWP component of their overall supplies. “Water delivery reliability” is defined as the annual amount of water that can be expected to be delivered with a certain frequency. Water delivery reliability depends on three general factors: the availability of water, the ability to convey water to the desired point of delivery, and the magnitude of demand for the water. SWP delivery reliability is calculated using computer simulations based on 82 years of historical data. The CADWR Reliability Report (CADWR, 2013) includes "Table A" which provides a projection of potential deliveries of imported surface water for the SWP contractors for the average water-year scenario, single dry water-year scenario, and multiple dry water-year scenario. Table A contract amounts do not reflect actual deliveries a contractor should expect to receive.
FIGURE 4-7
STATE WATER PROJECT FACILITIES

Source: CA DWR.
FIGURE 4-8
CCWA FACILITIES

Source: CCWA.
The CADWR Reliability Report (CADWR, 2013) also discusses factors having the potential to affect SWP water delivery reliability including the following:

- Restrictions on SWP and Central Valley Project (CVP) operations due to new regulations and legal findings to protect endangered species;
- Climate change and sea level rise, which is altering the hydrologic conditions in the State;
- Vulnerability of Delta levees to failure due to floods and earthquakes;
- Annual snowpack;
- Reservoir capacity.

Contractors’ requests for SWP water deliveries cannot always be met. In some years there are water shortages and water surpluses in other years. It was thought at the time that the SWP was constructed that the system could deliver about 50 percent of the allocations in a very dry year. Deliveries for the 2003-2012 period averaged 2,226,000 AF (53 percent) for Table A allocations. (CADWR, 2013) The 2013 Reliability Report provided a projection of CADWR’s water delivery reliability of the SWP for the current scenario (year 2013) and future scenario (year 2033). In 2015, SWP contractors received 20 percent of their SWP allocations. (CADWR, 2016) For the period 2006-2015, SWP contractors received an average of 49 percent of their SWP allocations. The last 100 percent allocation, difficult to achieve even in wet years due to pumping restrictions to protect threatened and endangered fish, was in 2006.

The 2013 Reliability Report (CADWR, 2013) indicated that the SWP, using existing facilities operated under current regulatory and operational constraints and future anticipated conditions, and with all contractors requesting delivery of their full Table A allocations in most years, could deliver 58 percent of Table A allocations on a long-term average basis. However, in a single dry water-year (worst case scenario) CADWR estimated delivery of an average of only 11 percent of Table A allocations. In a four-year drought scenario, the CADWR estimated delivery of an average of 31 percent of Table A allocations.

The 2013 Reliability Report (CADWR, 2013) recognized continuing challenges to the ability of the SWP to deliver full contractual allocations of SWP water. Factors that affect the ability to estimate existing and future SWP water delivery reliability include the following:

- water availability at the source;
- water rights with priority over the SWP;
- climate change;
- regulatory restrictions on SWP exports;
- ongoing environmental and policy planning efforts;
- San Joaquin River/Sacramento River Delta levee failure.

While increased uses for the SWP pipeline capacity are being found for wheeling water, the SWP allocation may not always provide sufficient drought protection. The CVWD often elects to not receive SWP water in normal, wet, and dry years by not using its full SWP allocation.
Water from the SWP has been available to CVWD since 1995. Actual SWP water deliveries to
the District in 2015 were 736 AF which included 246 AF in an exchange with ID #1 (see Table
4-1 for details). For the period 2011-2015, SWP water provided approximately 685 AFY (16
percent of the District’s water supplies). See Table 4-4 for details.

4.2.4 Additional Water Supply Projects

Currently the District relies on three sources of supply to meet water demand in its service area.
These include: local groundwater, Cachuma Project, and State Water Project. Additionally,
CVWD from time to time will purchase or exchange water from neighboring water purveyors.
The District anticipates sufficient supply to meet demand for the next 25 years under normal
water supply and water demand conditions. Current District Capital Improvement Projects relate
to reliability and water quality issues rather than supply.

The District currently participates in two “out of District storage programs”. The first program
includes a cooperative arrangement for groundwater banking called “Short-Term Water Storage
Partnership” (Rosedale-Rio Bravo Water Storage District and Irvine Ranch Water District),
which the District has participated in since 2008. This program involves storage of SWP water in
the groundwater basins managed by the Rosedale-Rio Bravo Water Storage District. The second
program involves the District temporarily storing SWP carryover water in San Luis Reservoir.
The groundwater banking program and storage in San Luis Reservoir are two programs made
available to increase overall SWP supply reliability. Currently, the District has approximately
1271 AF of deliverable water stored in these two out of District storage programs.
Implementation of a portion of these arrangements, or any future potential water storage or
banking arrangements, can reasonably be expected to provide up to 1,000 AF of supply in future
years, and CVWD anticipates increasing this out of District storage amount between 2015 and
2034.

The District has explored opportunities to sell a portion of its State Water Project (SWP)
extitlement. The District entered into an Option Agreement in 2006 with Plains Exploration
Production (PXP) to sell up to 400 AFY of the District’s SWP entitlement portion. During the
Option period, PXP paid the District approximately $950,000 in slightly more than three years.
Unfortunately, PXP chose to terminate the Option Agreement in 2009.

As the District moves forward with the planning of its capital improvements, the focus has been
on creating a flexible, reliable, and robust water system including water supply reliability and
water quality. Among the improvements, the District is currently exploring the feasibility of an
aquifer storage and recover (ASR) program. In addition, it also recently completed a new
production/injection well, installed covers on surface reservoirs to protect water quality, and,
completed a new 3 million gallon storage tank to provide additional finished water storage.
While these projects will not directly increase the quantity of supply they will provide a means to
better utilize the available water supply and improve water quality.

Conjunctive use of the Carpinteria Groundwater Basin would potentially allow local storage of
excess water, such as spill water from Lake Cachuma that would normally be lost, to recharge
the Basin via ASR. Additionally, use of the groundwater in excess of the annual basin yield during dry periods is being considered to extend the surface water supply through drought periods.

In 2004, COMB completed an improvement to Lake Cachuma spillway to increase storage by approximately 9,300 acre feet by extending the flash boards 3 feet to bring the maximum lake elevation from 750 feet above sea level to 753 feet above sea level. Objective of this project was to provide additional storage for downstream releases related to fish habitat and water rights. This additional storage capacity was put to use in the winter of 2004-2005 in which Lake Cachuma filled during a single extreme winter storm.

4.2.5 Sales, Transfers, and Exchanges

The District is not a wholesaler and in general does not sell water to other agencies. The CVWD infrequently sells, transfers, and or exchanges water with other agencies. For example, the CVWD sold 250 AF in 2004 to Montecito Water District as a one-year contract. This water was sold to Montecito prior to entering the District's distribution system.

CVWD also participates regularly in a SWP exchange program with Santa Ynez Improvement District No. 1 (ID #1), located downstream of Lake Cachuma. Under the exchange program, CVWD typically purchases approximately 400 AF of SWP and supplies it to ID #1 for its use. In exchange, ID #1 supplies an equal amount of Lake Cachuma water to CVWD. This exchange eliminates the need to pump SWP water into Lake Cachuma and the retreatment of this water prior to use, thereby lowering the overall cost to both parties. CVWD saves approximately $110/AF in pumping charges by exchanging approximately 400 AFY of SWP supply with ID #.

In addition, the CVWD can receive water from the Casitas Municipal Water District (CMWD). The CMWD can provide surface water from Lake Casitas. An 8-inch piped connection exists between CMWD and CVWD systems. If more flow is required than the capacity of the existing 8-inch pipeline can deliver, as was the case in 1987 to 1991 drought, then an overland pipe could be installed to convey the additional flow. An emergency water exchange agreement remains in place with CMWD. For this reason, the CVWD has considered this a limited potential water supply. The CVWD also receives CMWD water for sale to CMWD customers adjacent to the CVWD service area.

The District continues to explore opportunities to sell a portion of its State Water Project (SWP) entitlement. The District is considering selling up to 1,000 AF of SWP entitlement. Additional details are provided in Section 4.2.3.

4.3 WATER QUALITY OF EXISTING WATER SUPPLIES

4.3.1 Water Quality Concerns

The District has both surface water and groundwater sources which present very different water quality issues. Surface water comes from State Water Project (Sacramento Delta) and Lake Cachuma (from the Santa Ynez River watershed) and the groundwater is locally produced via
District wells. The District meets all water quality requirements of the California Division of Drinking Water (CADDW, formerly Department of Public Health). A copy of the 2015 Consumer Confidence Report (CCR) is provided in Appendix G. Details for the District’s water quality monitoring program are provided in Appendix G.

4.3.2 Groundwater
The District extracts local groundwater from the Carpinteria Groundwater Basin. No known contamination issues exist with respect to the groundwater supply. Manganese arises as a secondary water quality concern for groundwater, and this is controlled via a treatment system. Groundwater is also used to blend with the imported supplies to reduce disinfection by-products. The District has no known water quality violations with respect to groundwater extractions. A copy of the current Consumer Confidence Report is provided in Appendix G. Details for the District’s water quality monitoring program are provided in Appendix G.

4.3.3 Surface Water (Cachuma and SWP Supplies)
The source of SWP water is rain and snow from the Sierra Nevada, Cascade, and Coastal mountain ranges. SWP water is delivered to Lake Cachuma where it is stored when purchased by CVWD, where it then travels to CVWD via the SCC. There are two water treatment plants (WTPs) along the SCC; Corona Del Mar, and Cater. The Cater WTP treats all Cachuma water delivered to the CVWD. Water treated at this plant can be drawn directly from the SCC or from Lauro Reservoir. Water in the SCC comes directly from Lake Cachuma via the Tecolote Tunnel. Normal operation for the Cater WTP is to draw water from the Lauro Reservoir.

Water quality issues of concern that affect SWP water held in surface reservoirs and in Lake Cachuma include: total organic carbon, taste and odor, color, bacteriological, and disinfection byproducts. These issues are typical of surface waters in California and resolved via treatment modifications. The District has no known water quality violations with respect to surface water sources. A copy of the 2015 Consumer Confidence Report is provided in Appendix G. Details for the District’s water quality monitoring program are provided in Appendix G.

4.4 FUTURE WATER SUPPLIES
A variety of existing water sources will be used by the District to meet water demands for the period 2020 to 2040 including local groundwater, local surface water from Cachuma Lake, and imported surface water from the SWP. The District may consider potential additional water supplies and/or management actions be implemented including, but not limited to, the following: increased groundwater production, participation in banking projects, conjunctive use, use of recycled water, groundwater and ocean desalination, participation in SWP allocation transfers, maximize use of and or purchase additional surface water rights, transfer or exchange of water rights, and additional support for water demand management programs (see Section 7). The following sections summarize future water supply programs that could be used to meet future water demands and increase the quantity and reliability of the District’s water supplies.
Table 4-5 summarizes the projected maximum available water supplies for the period 2020 to 2040 to meet water demands within the District service area (also see Appendix D, Table 6-9). Projected maximum available water supplies for the period 2020 to 2040 will be approximately 8,013 AFY, however this total is not sustainable. Potential maximum short-term extraction of groundwater by the District is 3,000 AFY, while the long-term average (sustainable-yield) will be approximately 1,400 AFY. The District's maximum local surface water allocation from the Cachuma Project is currently 2,813 AFY, while the District understands that future deliveries will be less than the maximum allocation. Maximum allocation from the SWP is 2,200 AFY (including 200 AF of drought buffer), while the District understands that future deliveries will be less than the maximum allocation. Each of these water supplies is described in detail in subsequent sections.

TABLE 4-5
PROJECTED MAXIMUM AVAILABLE WATER SUPPLIES 2020-2040
Note: District water supplies in a single normal water-year (not sustainable)

<table>
<thead>
<tr>
<th>Water Supplies (AFY)</th>
<th>Projected 2020</th>
<th>Projected 2025</th>
<th>Projected 2030</th>
<th>Projected 2035</th>
<th>Projected 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>2,813</td>
<td>2,813</td>
<td>2,813</td>
<td>2,813</td>
<td>2,813</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
</tr>
<tr>
<td>Recycled Water (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desalination</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transfers or Exchanges In/Out (5)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Other (6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>8,013</td>
<td>8,013</td>
<td>8,013</td>
<td>8,013</td>
<td>8,013</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) District pumping can be increased up to the operational yield of 3,000 AFY to offset demands. District anticipates a conservative estimate of long-term average for pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; current annual average District groundwater pumping is approximately 1,500 AFY (1984-2015). (McDonald, 2016)
(2) District current maximum allocation is 2,813 AFY. (McDonald, 2016)
(3) District current maximum allocation is 2,200 AFY (includes 200 AF drought buffer program). The projected value of 1,800 AF reflects the total allocation (2,200) minus the ID#1 exchange volume of 400 AF. (McDonald, 2016)
(4) District is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse. (McDonald, 2016)
(5) District approved up to 400 AF of SWP water for exchange with ID #1. (McDonald, 2016)
(6) District has banked and utilized 1,000 AFY of State Water Project water. District anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)

Table 4-6 summarizes the projected long-term available water supplies for the period 2020 to 2040 to meet normal water-year demands within the District service area (also see Appendix D, Table 6-9). Projected long-term available water supplies for the period 2020 to 2040 will be approximately 4,620 AFY. Table 4-6 indicates that the District’s projected conservative long-term groundwater extractions are anticipated to be approximately 1,400 AFY (consistent with Basin sustainable-yield). It is anticipated that groundwater extractions will be approximately 30 percent of the District’s total water supplies from 2020 to 2040. The District’s projected long-term available deliveries of local surface water from the Cachuma Project are anticipated to be approximately 1,970 AFY (including conservative estimate of average annual delivery of 70 percent of allocation due to sedimentation in the lake, releases for fish species, and downstream water rights). It is anticipated that surface water from the Cachuma Project will be approximately 43 percent of the District’s total water supplies from 2020 to 2040. The District’s projected long-term available deliveries from the SWP are anticipated to be approximately 1,250 AFY (including conservative estimate of average annual delivery of 58 percent of allocation) with approximately 400 AFY exchanged with ID#1. It is anticipated that SWP water will be approximately 27 percent of the District’s total water supplies from 2020 to 2040.

As summarized in Section 3.3, District total water demands are anticipated to increase to approximately 4,200 AFY by 2040. (McDonald, 2016) Therefore, projected available water supplies are anticipated to be sufficient to reliably meet future water demands under normal water-year conditions. Additional details for the comparison of water supplies and water demands is provided in Section 5.

4.4.1 Local Groundwater

As summarized in Section 4.2, the District extracts water from the Carpinteria Groundwater Basin. CVWD anticipates that pumping will average approximately 1,400 AFY in 2020 to 2040 (see Table 4-6 for details; also see Appendix D, Table 6-9). The District anticipates that the 1,400 AFY of extractions will be approximately 30 percent of the current Basin sustainable-yield. It is anticipated that District local groundwater extractions will be approximately 30 percent of the District’s long-term available water supplies from 2020 to 2040.

4.4.2 Cachuma Project

As summarized in Section 4.2, the District currently has a maximum allocation of approximately 2,813 AFY of Lake Cachuma surface water rights (see Table 4-6 for details; also see Appendix D, Table 6-9). However, the District anticipates delivery of a maximum of 1,970 AFY (70 percent of the allocation; via anticipated reduction of 30 percent) from 2020 to 2040. (McDonald, 2016) It is anticipated that surface water from the Cachuma Project will be approximately 43 percent of the District’s long-term available water supplies from 2020 to 2040. In addition, the District will continue to access Cachuma Project carryover water to supplement
the existing allocation. The District anticipates review of the Cachuma Project allocations in approximately 2020.

TABLE 4-6
PROJECTED LONG-TERM AVAILABLE WATER SUPPLIES 2020-2040
Note: District supplies in a single normal water-year (assuming sustainable management of each supply)

<table>
<thead>
<tr>
<th>Water Supplies (AFY)</th>
<th>Projected 2020</th>
<th>Projected 2025</th>
<th>Projected 2030</th>
<th>Projected 2035</th>
<th>Projected 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Recycled Water (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desalination</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transfers or Exchanges</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>In/Out (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values rounded.
(1) Conservative estimate of long-term average for District pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; current annual average District groundwater pumping is approximately 1,500 AFY (1984-2015); pumping can be increased up to the District’s operational yield (3,000 AFY) to offset demands. (McDonald, 2016)
(2) District’s conservative long-term planning estimate assumes delivery of 1,970 AFY (70 percent delivery) of maximum allocation of 2,813 AFY (McDonald, 2016).
(3) District’s conservative long-term planning estimate assumes delivery of 1,250 AFY (58 percent delivery) of SWP Table A water with 400 AFY exchanged with the ID #1. (McDonald, 2016; CADWR, 2014)
(4) District is currently evaluating potential long-term use of recycled water (CVWD, 2015). Conservative estimate assumes no recycled water available for direct or indirect reuse. (McDonald, 2016)
(5) District approved up to 400 AF of SWP water for exchange with ID #1. (McDonald, 2016)
(6) District has banked and utilized 1,000 AF of State Water Project water. District anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)
4.4.3 State Water Project

As summarized in Section 4.2, the District currently has a maximum allocation of approximately 2,200 AFY of SWP water (see Table 4-6 for details; also see Appendix D, Table 6-9). A conservative long-term normal water-year planning estimate projects delivery of 1,250 AFY of SWP water (based on 58% delivery of Table A water; DWR, 2014). The District anticipates direct delivery of 850 AFY (18% of future supplies) of SWP water and 400 AF (9% of future supplies) of SWP water exchanged with Santa Ynez ID No. 1 from 2020 to 2040. (McDonald, 2016) As noted in Section 4.2, CVWD typically purchases 300 to 400 AFY of SWP and supplies it to Santa Ynez ID No. 1 for its use. In exchange, Santa Ynez ID No. 1 provides an equal amount of Lake Cachuma water for CVWD’s use. See Section 4.4.6.2 for additional details. In addition, the District will continue to access SWP carryover water and suspended Table A SWP water to supplement the existing SWP allocation.

As previously noted, the District may sell a portion of the SWP allocation, however nothing has been finalized at the time of preparation of this UWMP. Availability of SWP water, particularly during summer months and periods of prolonged drought, and water quality considerations may restrict the District’s access to SWP water.

As previously noted, the District currently participates in two "out of District" storage programs including storing SWP water in Rosedale-Rio Bravo Water Storage District groundwater basins and storing SWP water in San Luis Reservoir. Currently, the District has approximately 1,000 AF of deliverable water stored in these two out of District storage programs. Implementation of a portion of these arrangements, or any future potential water storage or banking arrangements, can reasonably be expected to provide up to 1,000 AF of supply in future years, and CVWD anticipates increasing this out of District storage amount between 2015 and 2040.

For the purposes of this UWMP, the District does not anticipate pursuing additional SWP water allocations to supplement future water supplies. However, this does not restrict the District’s future efforts to pursue additional surface water supplies to supplement existing groundwater production.

4.4.4 Carpinteria Groundwater Bank

Since CVWD is reliant on groundwater, any discussion of water reliability strategies should include discussion of greater use of groundwater storage and conjunctive use management of the Carpinteria Basin. Direct recharge, in-lieu recharge, and ASR can be used in the deposit or “put” side of a water bank operation, and existing and new wells can be used for the withdrawal or “take” operations. Increased recharge of local creeks or recycled water could enhance the amount of water that can later be extracted.

For initial estimates of storage quantities for a groundwater bank, CVWD could consider obtaining 6,300 AF of storage, based on 5 percent storage losses over five years, and a storage account to accommodate six drought years. A water bank of this size would accommodate a similar period as the CADWR defined six-year drought of 1987 to 1992 (CADWR, 2000). An additional storage buffer could be added for a typical water bank mechanism for reducing rapid
changes in the storage account’s groundwater levels that limit withdrawals to one-third the storage account.

A water-banking program would need evaluation of the Basin response if it is stressed to a greater degree than has occurred historically. Groundwater modeling and well pumping tests would be needed to test for subsidence, seawater intrusion, or other potential effects of increasing use of the Carpinteria Basin.

4.4.4.1 Extraction Options

A local water bank could be used by CVWD, but would need cooperation by users of private wells in the Basin. During many years, well owners would receive the benefit of higher groundwater levels and reduced pumping costs. In the drought years, the groundwater levels would be drawn down, and water levels could drop to historic lows. Extraction limits would need to be determined to avoid negative effects of subsidence, having water levels below well pump intakes, or sea water intrusion. Further modeling and aquifer testing would be needed to determine how water levels would respond over a series of years. The bank would have the potential to be expanded to allow for use by other nearby entities during a drought if this option makes sense to the Basin users.

4.4.4.2 Recharge Options

Groundwater storage and banking projects generally have rules of operation, whereby an agency can “rent” storage space in a groundwater basin. In-lieu recharge, in conjunction with Lake Cachuma and SWP deliveries, presents an opportunity for groundwater banking. When surplus water is available from the SWP or Lake Cachuma (due to spill events or high carryovers), the CVWD could reduce its well production and use the surplus surface water to meet demands. In this manner, low cost surplus surface water is used ‘in-lieu’ of using the groundwater, causing a net recharge of the groundwater. Withholding use of the groundwater resource prolongs the availability of the basin yield, and may allow CVWD to increase its extractions of water from the basin to enhance dry year reliability during drought conditions.

Other direct recharge methods are also available including recharge along the creek beds, and ASR. ASR is the practice of injecting water in a well during times when water is available, and recovery of the water from the same well during times when it is needed. ASR, as a water supply management option, allows for storing water during times of flood, surplus, or when water quality is good, and recovering it later during emergencies or times of water shortage, or when water quality from the source would otherwise be poor. Large water volumes are stored deep underground, reducing or eliminating the need to construct large and expensive surface reservoirs. ASR has the additional advantage of being easily measurable. CVWD (2005) has identified an increasing interest in ASR to enhance groundwater recharge and if needed, protect the aquifer from seawater intrusion. The District has analyzed ASR in several previous investigations.

Increased use of the Carpinteria Basin would involve agriculture/growers and other possible stakeholders. Grant money from the State (ie, AB3030 funding) could be available for more
detailed groundwater modeling. Such modeling would serve to better quantify how much the Carpinteria Basin could be used for all the stakeholders, and, to test various groundwater management plans. The District plans to formally evaluate groundwater banking in the Carpinteria Basin.

4.4.5 Desalinated Water

With population growth and the recent prolonged drought contributing to an increase in Californians' concerns about water scarcity, several communities and industries in California are looking towards desalination plants to convert saline water (e.g., seawater, brackish water or treated wastewater) into fresh water. By 2030, the number of operational plants is expected to increase to 33 plants, for a total desalination capacity for the state close to 300,000 AFY (CADWR, 2005a). Use of desalinated water could aid in offsetting CVWD’s reliance on their other available water supplies during drought periods, and allow for their more efficient management. Additionally, use of desalinated water could be used to improve water quality of new and existing potable water supplies.

Seawater desalination options potentially available to CVWD include:

- Construct a new seawater desalination facility within or adjacent to the District’s service area
- Participate in the City of Santa Barbara’s desalination project
- Participate in a desalination facility outside of Santa Barbara County and receive water by exchange.

The District understands that the City of Santa Barbara is pursuing restarting their ocean desalination facility. At present, the District does not plan to purchase water from the City of Santa Barbara ocean desalination facility since anticipated costs of the desalinated water exceed costs of the District's other water supplies. At the present time, the District does not have plans to construct a desalination treatment plan nor purchase desalinated water from any agency.

4.4.6 Sales, Transfers, and Exchange Opportunities

4.4.6.1 Water Transfers

The District has considered the idea of banking water or exchanging water with other purveyors, but, to date, such measures have not been planned. The District annually looks at its customer base demand, District population growth, and economic changes to determine if additional water supplies need to be acquired. The District is currently exploring options for the use of a groundwater bank located outside of the County. However, an agreement is not in place at this time.

Opportunities exist with Casitas Municipal Water District to the south and a State Water Project connection to the north (CCWA Extension). The District will continue to assess its future supply needs and if necessary will explore water banking and/or exchange possibilities.
4.4.6.2 Water Exchanges

As described in Section 4.2, CVWD also participates regularly in a SWP exchange program with Santa Ynez ID No. 1, located downstream of Lake Cachuma. Under the exchange program, CVWD typically purchases 300 to 400 AFY of SWP and supplies it to Santa Ynez ID No. 1 for its use. In exchange, Santa Ynez ID No. 1 provides an equal amount of Lake Cachuma water to CVWD. The District anticipates continuing this program through 2040 (see Table 4-6 for details; also see Appendix D, Table 6-9). It is anticipated that SWP/Cachuma water exchange with Santa Ynez ID No. 1 will be approximately 9 percent of the District’s long-term available water supplies from 2020 to 2040.

4.4.6.3 Casitas Municipal Water District

During the 1987 to 1991 drought the District and other Cachuma project members made use of another source of water from Ventura County. This source was Casitas Lake managed by Casitas Municipal Water District (CMWD). Although the drought affected CMWD supply, they still had excess water to sell to water purveyors in Santa Barbara County. An 8-inch pipeline exists between the CMWD and CVWD systems. If more flow is required than the capacity of the existing 8-inch pipeline can deliver, as was the case in 1987 to 1991 drought, then an overland pipe would be installed to convey the additional flow. An emergency water exchange agreement remains in place. For this reason, the District has considered this a limited potential water supply.

4.4.7 Recycled Water

The District is considering recycled water to meet future water demands. Acceptable uses of recycled water include irrigating crops, parks, and golf courses, as well as water needed for groundwater recharge, industrial processes, power plants, fire fighting, and other similar uses. Increased use of recycled water for non-potable uses could reduce the District’s reliance on SWP and Lake Cachuma supplies and reduce use of local groundwater supplies.

Issues associated with the use of recycled water include:

- Water quality as it relates to the end use; is recycled water suitable for irrigation of agricultural or public park lands, groundwater recharge, or other reuse
- Regulatory requirements associated with the end use and the public’s contact with the recycled water
- Cost for additional treatment beyond what the wastewater treatment plant already required to provide.

4.4.7.1 Wastewater Treatment

Carpinteria Valley Water District does not collect or treat wastewater. Wastewater within CVWD’s service area is collected and treated by Carpinteria Sanitary District (CSD). The collection system covers most of the City of Carpinteria and some outlying areas of unincorporated County of Santa Barbara.

The collection system consists of approximately 40 miles of piping and serves 3,820 residential, 35 mixed commercial/residential, and 251 non-residential parcels within the CSD service area.
Estimated maximum peak flow of the collection system is 6.5 MGD, peaking for a period of 20 minutes. Peak flows occurring during heavy rainfall are likely attributable to infiltration and intrusion flows.

The CSD wastewater treatment plant (WWTP) is located on a low lying section of an alluvial deposit adjacent to Carpinteria Creek. Plant Capacity is 2.5 MGD with treatment meeting secondary standards. Treated water is disposed via an ocean outfall located 1,000 feet out from the treatment plant. Average inflow to the plant is approximately 1.12 MGD (see Appendix D, Table 6-2).

The District could partner with CSD to utilize approximately 1,000 AFY of treated wastewater (recycled water). However, the CSD WWTP is currently capable of meeting secondary standards only. In order to adequately treat the wastewater, the plant would need to be modified with tertiary treatment capabilities. It is understood that the CSD currently has enough acreage at the Carpinteria treatment facilities to implement a tertiary system that could produce recycled water. The CSD does not have any immediate plans to upgrade treatment facilities to meet tertiary standards.

4.4.7.2 Existing Recycled Water Supplies and Demands

Water recycling, also known as water reclamation, involves water that, as a result of treatment of wastewater, is suitable for direct beneficial use. Currently only localized recycled water systems exist. Those are located in privately owned agricultural greenhouse operations and at the Carpinteria Sanitary District grounds. It is unknown to what degree greenhouse operators are using recycled water but it does appear that recycled systems are common within that industry. Carpinteria Sanitary District uses recycled water on the treatment plant premises for treatment processes and some landscape irrigation.

The CSD WWTP is currently permitted to discharge secondary-23 recycled water. Secondary-23 means the water has been oxidized and disinfected so that the median concentration of total coliform bacteria does not exceed a Most Probable Number (MPN) of 23 per 100 milliliters (ml) and the single day maximum does not exceed a MPN of 240 per 100 ml in any 30-day period.

4.4.7.3 Future Recycled Water Supplies and Demands

Currently, there are no projected recycled water supplies and demands through 2040. Future recycled water local production is anticipated to be 0 AF per year from 2020 to 2040 (see Table 4-7). Commitments for future recycled water local demands are 0 AF per year (see Table 4-8; also see Appendix D, Table 6-4).
TABLE 4-7
PROJECTED RECYCLED WATER PRODUCTION 2020-2040

<table>
<thead>
<tr>
<th>Production (AFY)</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpinteria Sanitary District (1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
Source: Carpinteria Sanitary District, 2016.
(1) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). Conservative estimate assumes no recycled water available for direct or indirect reuse. (McDonald, 2016)

TABLE 4-8
PROJECTED RECYCLED WATER DEMAND 2020-2040

<table>
<thead>
<tr>
<th>Demand by User Type (AFY) (1)</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landscape</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wildlife Habitat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wetlands</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Industrial</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater Recharge</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
Source: Carpinteria Sanitary District, 2016.
(1) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). Conservative estimate assumes no recycled water available for direct or indirect reuse. (McDonald, 2016)

However, that may change in the near future. The District has partnered with the Carpinteria Sanitary District and the City of Carpinteria to develop a Recycled Water Facilities Plan (Plan) for the District’s service area. (CVWD, 2015) The Draft Plan includes a market assessment of potential recycled water customers. In addition, the Draft Plan includes development of various recycled water use alternatives to serve municipal, agricultural, and groundwater recharge uses. The Draft Plan includes the potential to upgrade the CSD WWTP to produce tertiary treated water. The Draft Plan includes 10 alternative scenarios including municipal landscape only, agriculture only, groundwater recharge only, combination of agriculture and municipal, combination of agriculture and groundwater charge, and a no-project alternative. Estimated recycled water yield of the alternatives range from 10 AFY (alternative 1A) to 1,200 AFY (alternatives 4A and 4B).
Estimated capital costs for the alternatives range from $1,000,000 (alternative 1A) to $24,200,000 (alternative 4A). Estimated unit cost (cost per AF) range from $1,340 per AF (alternative 4B) to $7,400 per AF (alternative 1A). The District anticipates completion of the Plan in 2016. Because it is not feasible to deliver recycled water at this time, no incentives to do so have been developed. Additionally, the District does not promote the installation of dual systems because there are no definite plans to begin using recycled water.

4.5 WATER QUALITY OF FUTURE WATER SUPPLIES

The District plans to receive both groundwater sources and surface water sources as the primary sources of water supply through 2040 (see Table 4-1). As previously noted in Section 4.3, each of these supplies has very different water quality issues. The District does not anticipate additional water quality concerns above and beyond those defined in Section 4.3. A copy of the current Consumer Confidence Report is provided in Appendix E.

4.6 CLIMATE CHANGE

4.6.1 Introduction

Current climate change projections suggest that California will continue to enjoy a Mediterranean climate with the typical seasonal pattern of relatively cool and wet winters and hot, dry summers. However, climate patterns are different now and may continue to change at an accelerated pace. Increases in global emissions of greenhouse gases are leading to serious consequences for California including, but not limited to, the following: higher air and water temperatures, rising sea levels, increased droughts and floods, decreased amount and duration of snow pack, and extreme variability in weather patterns. (CADWR, 2013a; CANRA, 2009) These changes are anticipated to intensify over the 20-year planning horizon of this Assessment. Even if all emissions of greenhouse gases ceased today, some of these developments would be unavoidable because of the increase in greenhouse gases recorded over the last 100 years and the fact that the climate system changes slowly. (PPIC, 2011) Many of these climate changes would affect the availability, volume, and quality of California water supplies.

4.6.2 Potential Impacts of Climate Change

State and local water supplies and water demands may be impacted by climate change via one or more processes including precipitation, air temperature, runoff, sea level change, and flooding. Rainfall variability is expected to increase, leading to more frequent droughts and floods. Runoff from snowpack may be earlier and less predictable, and precipitation may fall as more rain and less snow. Air temperatures in California are anticipated to increase by 2 to 9 degrees Fahrenheit by the year 2100. (CANRA, 2009) Higher air temperatures may result in more rain and less snow, diminishing the reserves of water held in the Sierra Nevada snowpack. (CANRA, 2009) Spring runoff from snowpack is occurring earlier now than it did in the first part of the 20th century. This change in runoff could affect availability of spring and summer snowmelt from mountain areas, including State Water Project water from the Sacramento Delta and local rivers and streams. Total annual exports from the Delta for State and Federal contractors may also decrease by 20 to 25 percent by the year 2100. (CCCC, 2009)
Sea levels have risen by as much as 7 inches along the California coast over the last century. (CANRA, 2009) According to some estimates, sea level is projected to rise an additional 2 to 5 feet by 2100. (PPIC, 2011; Pacific Institute, 2009; CA RNA, 2009; CAT, 2008) These sea level increases could significantly impact infrastructure within coastal areas and affect quantity and timing of State Water Project water exports from the Sacramento Delta. Effects of sea level rise in the Delta would be two-fold: (1) problems with weak levees protecting the low-lying land, many already below sea level; and (2) increased salinity intrusion from the ocean which could degrade fresh water transfer supplies pumped at the southern edge of the Delta or require more fresh water releases to repel ocean salinity.

In the CADWR Water Plan (CADWR, 2013a), an assessment of the impacts of global climate change on the State’s water supply was conducted using a series of computer models based on decades of scientific research. Model results for California indicate a significant likelihood of increased temperature, reduction in Sierra snow depth, early snow melt, and a rise in sea level. These changing hydrological conditions could affect future planning efforts which are typically based on historic conditions. Difficulties in water supplies planning that may arise include, but are not limited to, the following:

- hydrological conditions, variability, and extremes that are different than what current water systems were designed to manage.
- changes occurring too rapidly to allow sufficient time and information to permit managers to respond appropriately.
- special efforts or plans to protect against surprises and uncertainties.

As such, CADWR will continue to provide updated results from these models as further research is conducted and information becomes available.

4.6.3 Potential Effects of Climate Change on Water Demand

Climate change may increase daytime and nighttime temperatures and seasonal temperatures. This change may impact the length of the growing season. This general increase in temperatures coupled with greater variability and unpredictability in precipitation is expected to lead to increases in evapotranspiration resulting from warmer seasons; thereby creating an increase in demand for irrigation water and an increase in the year-to-year variability of demand.

Temperate fruit and nut trees such as almonds, pistachios, and apples require adequate winter chill to produce economically viable yields. Increased temperatures daytime, nighttime, and season temperatures may reduce winter chill hours thereby causing adverse effects on the yield of some crops. Some farmers are beginning to overcome this change by planting trees closer together and using new varieties.

Studies are now underway to prepare farmers for the likely impacts of climate change. Such efforts include breeding varieties of fruit trees which can withstand the decreased water chill hours, developing tools to aid the crops in coping with insufficient chill, and researching the temperature responses of particular orchard crops to better understand potential long-term
effects. However, some solutions such as replanting orchards with altered crop varieties or the installation of aiding tools may not be feasible for many irrigators.

4.6.4 Mitigation and Adaptation

Responding to climate change generally takes two forms: mitigation and adaptation. Mitigation is taking steps to reduce human contribution to the causes of climate change by reducing greenhouse gas (GHG) emissions. Adaptation is the process of responding to the effects of climate change by modifying our systems and behaviors to function in a warmer climate. (CADWR, 2013a)

In the water sector, climate change mitigation is generally achieved by reducing energy use, becoming more efficient with energy use, and/or substituting renewable energy sources in place of fossil fuel based energy sources. Because water requires energy to move, treat, use, heat, and discharge, water conservation is also energy conservation. As each water supplier implements water conservation measures and determines its water conservation targets, it can also calculate conserved energy and GHGs not-emitted as a side benefit. Once a water supplier has calculated the water conserved by a BMP, it is straightforward to convert that volume to conserved energy, and GHGs not-emitted. Additionally, water suppliers may want to focus on implementing water conservation measures that conserve water but do so at a significant decrease in GHG emissions as compared with other measures. (CADWR, 2013a)

Climate change means more than hotter days. Continued warming of the climate system has considerable impact on the operation of most water districts. Snow in the Sierra Nevada provides 65 percent of California’s water supply. Predictions indicate that by 2050 the Sierra snowpack will be significantly reduced. Much of the lost snow will fall as rain, which flows quickly down the mountains during winter and cannot be stored in our current water system for use during California’s hot, dry summers. The climate is also expected to become more variable, bringing more droughts and floods. Water districts will have to adapt to new, more variable conditions. (CADWR, 2013a)

Principles of climate change adaptation include the following:

- As more mitigation is completed now, the less adaptation we may have to do in the future, because climate impacts could be less severe.
- Mitigation is much less expensive than adaptation.
- Mitigation should happen globally.
- Adaptation must happen locally.
- Adaptation strategies should be implemented according to future conditions, regular assessment and recalibration.
- Some adaptation strategies have benefits that can be realized today.
4.6.5 Local Strategies

As climate change continues to unfold in the coming decades, water agencies may need to mitigate and adapt to new strategies, which may require reevaluating existing agency missions, policies, regulations, facilities, funding priorities, and other responsibilities. Examples of mitigation and adaptation strategies include, but not limited to, the following:

- Prepare long-term facility and sustainability master plans including specific elements for climate change adaptation.
- Increase ground water recharge using additional surface water and recycled water.
- Increase recycled water demands.
- Promote additional water use efficiency for urban, commercial, and industrial best management practices.
- Increase investments in infrastructure that promotes adaptation strategies (such as ground water recharge, and recycled water) and existing principal facilities susceptible to impacts of climate change.

Notwithstanding the above strategies for dealing with climate change, the reality is that current environmental regulations place a very high priority on releasing additional water for endangered species (i.e., Sacramento Delta and Santa Ynez River) and the environment. The potential for increased water demand for environmental resources and the possibility of reduced water supplies will be one of the biggest challenges confronting water agencies.

The goal of the District is to utilize the available surface water and groundwater supplies as effectively as possible in meeting the requirements of the District’s water users. It is worth noting, however, that the District’s control over water supplies is limited; thus management practice changes will need to be adaptive in nature.
SECTION 5: WATER SUPPLY RELIABILITY

5.1 UWMP REQUIREMENTS

This section will include the following:

- Describe water management tools and options to maximize supplies and minimize the need to import water from other regions. (CWC, 10620(f))
- Describe the reliability of the water supply and vulnerability to seasonal or climatic shortage. (CWC, 10631(c)(1))
- Provide data for an average water-year, a single dry water-year, and multiple dry water-years. (CWC, 10631(c)(1))
- For any water source that may not be available at a consistent level of use, describe plans to supplement or replace that source. (CWC, 10631(c)(2))
- Provide information on the quality of existing sources of water available to the supplier and the manner in which water quality affects water management strategies and supply reliability. (CWC, 10634)
- Assess the water supply reliability during normal, dry, and multiple dry water-years by comparing the total water supply sources available to the water supplier with the total projected water use over the next 20 years. (CWC, 10635(a))
- Provide an estimate of the minimum water supply available during each of the next three water years based on the driest three-year historic sequence for the agency. (CWC, 10632(a)(2))

5.2 RELIABILITY

Water supply reliability is a measure of a water service system’s anticipated success in managing water shortages. Analysis of water supply reliability is one of the primary requirements of the Urban Water Management Plan (Water Code Section 10635(a)). This assessment includes: an average water-year, single dry water-year, multiple dry water-years, and three-year minimum supply. In order to plan for a reliable water supply District staff examined both the possibility of short-term and long-term shortages. A short-term water shortage could result from a disaster such as an earthquake, flood, or even a widespread power outage. A long-term water shortage would most likely result from a long period of drought in the region.

5.3 BASIS OF WATER-YEAR DATA

As required, the District determined the basis of water-year data. These years represent the historical average water-year (average water-year), single driest water-year (single dry water-year), and driest multiple year period (multiple dry water-year). Table 5-1 summarizes the District’s basis of water-year data. The “Supply Delivered” column in Table 5-1 represents the water supply delivered during the base year (not maximum available water supply). The District
selected 2009 as the average water-year, 2014 as the single dry water-year, and 2012 to 2015 as the multiple dry water-years period. As indicated in Table 5-1 (also see Appendix D, Table 7-1), the District determined that the potential water supply delivered is 4,952 AF for an average water-year, 4,452 AF for single dry water-year, and 3,852 to 5,052 AF in multiple dry water-years.

TABLE 5-1
BASIS OF WATER YEAR DATA

<table>
<thead>
<tr>
<th>Water-Year Type</th>
<th>Base Year(s)</th>
<th>Supply Delivered (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Water-Year</td>
<td>2009</td>
<td>4,920</td>
</tr>
<tr>
<td>Single Dry Water-Year</td>
<td>2014</td>
<td>4,452</td>
</tr>
<tr>
<td>Multiple Dry Water-Years</td>
<td>2012-2015</td>
<td>4,452-5,052</td>
</tr>
</tbody>
</table>

Notes:
Source, CVWD, 2016. All values in AF, rounded.

5.4 **RELIABILITY ASSESSMENT**

In compliance with the Urban Water Management Planning Act, an assessment was developed to determine the District’s water supply reliability. This assessment includes a comparison of the total projected water supplies available with the projected water demands through the year 2040 for the following conditions: (1) normal/average water-year, (2) single dry water-year, and (3) multiple consecutive dry water-years. Results for the assessment for each of these three conditions are described below.

5.4.1 **Normal Water-Year Assessment**

Local groundwater, Cachuma surface water, and SWP surface water are anticipated to be the primary water supplies through 2040. For the normal water-year assessment, the District selected 2009 as the basis for the evaluation (see Table 5-1). Table 5-2 (also see Appendix D, Table 7-2) indicates that total water supplies available in normal water-years is projected to be 4,620 AF for the period 2020 to 2040. Total water demands are projected to be 4,148 to 4,205 AFY for the period 2020 to 2040. Table 5-2 indicates that the District’s projected conservative long-term groundwater extractions are anticipated to be approximately 1,400 AFY (consistent with Basin sustainable-yield). The District’s projected long-term available deliveries of local surface water from the Cachuma Project are anticipated to be approximately 1,970 AFY (including conservative estimate of average annual delivery of 70 percent of allocation due to sedimentation in the lake, releases for fish species, and downstream water rights). The District’s projected long-term available deliveries from the SWP are anticipated to be approximately 1,250...
AFY (including conservative estimate of average annual delivery of 58 percent of allocation) with approximately 400 AFY exchanged with ID#1.

Table 5-2 indicates that the District will have an estimated net positive supply or contingency ranging from approximately 472 AFY in 2020 to approximately 415 AFY in 2040. Thus, no deficit was observed during the assessment of normal water-year supplies and demands. The District desires to have a minimum water supply surplus or contingency of approximately 200 AF each year in the event of an interruption of water supply due to operational or climate adversity. CVWD anticipates that groundwater pumping within the basin would be increased up to the sustainable-yield to offset increased demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

TABLE 5-2
PROJECTED NORMAL WATER-YEAR SUPPLY AND DEMAND 2020-2040

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater (1)</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
<td>1,400</td>
</tr>
<tr>
<td>Cachuma Project (2)</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
<td>1,970</td>
</tr>
<tr>
<td>State Water Project (3)</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Exchange (3)</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Other (4,5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supply Total</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
</tr>
<tr>
<td>Demand Total (6)</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
<tr>
<td>Difference (7)</td>
<td>472</td>
<td>457</td>
<td>443</td>
<td>428</td>
<td>415</td>
</tr>
</tbody>
</table>

Notes:

Source: CVWD 2016. All values in AFY and rounded.

1. Current conservative estimate of long term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015); CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)

2. Cachuma supply at 1,970 AFY represents the most current understanding of the normal year yield from the Project (70% delivery of 2,813 AFY). (McDonald, 2016). In addition, the District could use Cachuma Project carryover water. District’s current maximum Cachuma allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation.

3. SWP delivery may be 1,250 AFY which represents the most current understanding of the normal water-year yield from the SWP (58% delivery of max allocation at 2,200 AFY). In addition, the District could use SWP carryover water. The projected SWP value of 850 AFY reflects the average delivery (1,250 AFY) minus the ID#1 exchange volume of 400 AF. (McDonald, 2016) District’s current maximum SWP allocation is 2,200 AF (includes 200 AFY drought buffer program). However, the District understands that future deliveries will be less than the maximum allocation.
(4) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse.
(5) CVWD has banked and utilized 1,000 AFY of State Water Project water. CVWD anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)
(6) Does not include potential additional reduction of demand of 10 percent for period 2020-2040 utilizing water enhanced demand management measures for urban and agricultural customers.
(7) The difference represents the sum of supplies minus demands. The CVWD desires to maintain a positive supply or contingency of a minimum of 200 AFY in order to account for unforeseen changes in supplies or demands.

Table 5-2 indicates the District will have an estimated net positive supply or contingency ranging from approximately 472 AFY in 2020 to approximately 415 AFY in 2040. Thus, no deficit was observed during the assessment of normal water-year supplies and demands. The District desires to have a minimum water supply surplus or contingency of approximately 200 AF each year in the event of an interruption of water supply due to operational or climate adversity. CVWD anticipates that groundwater pumping within the basin would be increased up to the sustainable-yield to offset increased demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

5.4.2 Single Dry Water-Year Assessment

Local groundwater, Cachuma surface water, and SWP surface water are anticipated to be the District’s primary water supplies through 2040. Table 5-3 (also see Appendix D, Table 7-3) indicates that total water supplies available in single dry water-years is projected to be 5,212 AF for the period 2020 to 2040. Total water demands are projected to range from 4,770 to 4,836 AFY for the period 2020 to 2040 (increase of 15 percent over normal water-year demands). Table 5-3 indicates that the District’s projected groundwater extractions during a single dry water-year are anticipated to be approximately 3,000 AFY. The District’s projected available deliveries of local surface water from the Cachuma Project for a single dry water-year are anticipated to be approximately 1,970 AFY (including conservative estimate of average annual delivery of 70 percent of allocation due to sedimentation in the lake, releases for fish species, and downstream water rights). The District’s projected available deliveries from the SWP for a single dry water-year are anticipated to be approximately 242 AFY (including conservative estimate of average annual delivery of 11 percent of allocation).

Table 5-3 indicates the District will have an estimated net positive water supply or contingency of approximately 442 AFY in 2020 to 376 AFY in 2040. Thus, no deficit was observed during the assessment of single dry water-year supplies and demands. The District desires to have a minimum water supply surplus or contingency of approximately 200 AF each year in the event of an interruption of water supply due to operational or climate adversity. CVWD anticipates that groundwater pumping within the basin would be increased to offset increased water demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.
TABLE 5-3
PROJECTED SINGLE DRY WATER-YEAR SUPPLY AND DEMAND 2020-2040

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Total (1,2,3,4,5)</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
</tr>
<tr>
<td>Demand Total (6)</td>
<td>4,770</td>
<td>4,787</td>
<td>4,804</td>
<td>4,821</td>
<td>4,836</td>
</tr>
<tr>
<td>Difference (7)</td>
<td>442</td>
<td>425</td>
<td>408</td>
<td>391</td>
<td>376</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values in AFY and rounded. Assumes normal water-year precedes single dry year.
(1) CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. Current conservative estimate of long-term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015). (McDonald, 2016)
(2) Projected Cachuma Project delivery is 1,970 AFY represents the most current understanding of the normal water-year yield from the Project (70% delivery of max. allocation of 2,813 AFY). In addition, the District could use Cachuma Project carryover water. District’s current maximum Cachuma allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) Projected SWP delivery is 242 AFY which represents the most current understanding of the single dry water-year yield from the SWP (11% delivery of max allocation at 2,200 AFY). In addition, the District could use SWP carryover water. District’s current maximum SWP allocation is 2,200 AFY (includes 200 AFY drought buffer program). However, the District understands that future deliveries will be less than the maximum allocation. The District anticipates no exchange with the ID#1 in a single dry water-year. (McDonald, 2016)
(4) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse.
(5) CVWD has banked and utilized 1,000 AFY of State Water Project water. CVWD anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)
(6) Does not include potential additional reduction of demand of 10 percent for period 2020-2040 utilizing water enhanced demand management measures for urban and agricultural customers.
(7) The difference represents the sum of supplies minus demands. The CVWD desires to maintain a positive supply or contingency of a minimum of 200 AFY in order to account for unforeseen changes in supplies or demands.

5.4.3 Multiple Dry Water-Year Assessment
Local groundwater, Cachuma surface water, and SWP surface water are anticipated to be the District’s primary water supplies through 2040. For the multiple dry water-years assessment, the District selected 2012 to 2015 as the basis for the evaluation (see Table 5-1). Table 5-4 (also see Appendix D, Table 7-4) indicates that in year 1 of the multiple dry water-year assessment, CVWD is projected to have 6,151 to 6,814 AFY of available water supplies compared to water demands ranging from 4,148 to 4,205 AFY for a net positive surplus of 1,946 to 2,666 AFY.
Table 5-4 indicates that in year 2 of the multiple dry water-year assessment, CVWD is projected to have 6,126 to 6,561 AFY of available water supplies compared to water demands of 4,770 to 4,836 AFY for a net positive surplus of 1,322 to 1,791 AFY. In year 3 of the multiple dry water-year assessment, CVWD is projected to have 4,767 to 5,176 AFY of available water supplies compared to water demands of 4,438 to 4,499 AFY for a net positive surplus of 312 to 676 AFY. In year 4 of the multiple dry water-year assessment, CVWD is projected to have 3,669 to 3,879 AFY of available water supplies compared to water demands of 3,526 to 3,574 AFY for a net positive surplus of 119 to 305 AFY. Additional analyses are provided in Appendix O.
Table 5-4 indicates that the District will have an estimated net surplus of water supplies or contingency of approximately 119 to 2,666 AFY for the period 2020 to 2040. Thus, no deficit was observed during the assessment of multiple dry water-year supplies and demands. The District desires to have a minimum water supply surplus or contingency of approximately 200 AF each year in the event of an interruption of water supply due to operational or climate adversity. CVWD anticipates that groundwater pumping within the basin would be increased to offset increased water demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

TABLE 5-4
PROJECTED MULTIPLE DRY WATER-YEAR SUPPLY AND DEMAND 2020-2040

<table>
<thead>
<tr>
<th></th>
<th>AFY</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Supply Total (1,2,3,4,5)</td>
<td>6,814</td>
<td>6,151</td>
<td>6,151</td>
<td>6,151</td>
<td>6,151</td>
</tr>
<tr>
<td></td>
<td>Demand Total (6)</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
<tr>
<td></td>
<td>Difference (7)</td>
<td>2,666</td>
<td>1,988</td>
<td>1,974</td>
<td>1,959</td>
<td>1,946</td>
</tr>
<tr>
<td>Year 2</td>
<td>Supply Total (1,2,3,4,5)</td>
<td>6,561</td>
<td>6,140</td>
<td>6,126</td>
<td>6,211</td>
<td>6,298</td>
</tr>
<tr>
<td></td>
<td>Demand Total (6)</td>
<td>4,770</td>
<td>4,787</td>
<td>4,804</td>
<td>4,821</td>
<td>4,836</td>
</tr>
<tr>
<td></td>
<td>Difference (7)</td>
<td>1,791</td>
<td>1,353</td>
<td>1,322</td>
<td>1,390</td>
<td>1,462</td>
</tr>
<tr>
<td>Year 3</td>
<td>Supply Total (1,2,3,4,5)</td>
<td>5,019</td>
<td>4,767</td>
<td>4,936</td>
<td>5,004</td>
<td>5,176</td>
</tr>
<tr>
<td></td>
<td>Demand Total (6)</td>
<td>4,438</td>
<td>4,454</td>
<td>4,469</td>
<td>4,485</td>
<td>4,499</td>
</tr>
<tr>
<td></td>
<td>Difference (7)</td>
<td>580</td>
<td>312</td>
<td>466</td>
<td>518</td>
<td>676</td>
</tr>
<tr>
<td>Year 4</td>
<td>Supply Total (1,2,3,4,5)</td>
<td>3,803</td>
<td>3,795</td>
<td>3,669</td>
<td>3,721</td>
<td>3,879</td>
</tr>
<tr>
<td></td>
<td>Demand Total (6)</td>
<td>3,526</td>
<td>3,539</td>
<td>3,550</td>
<td>3,563</td>
<td>3,574</td>
</tr>
<tr>
<td></td>
<td>Difference (7)</td>
<td>277</td>
<td>256</td>
<td>119</td>
<td>158</td>
<td>305</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values in AFY and rounded. See Appendix O for derivation of each value.
(1) Projected groundwater production is 1,100 to 2,800 AFY. Current conservative estimate of long term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015); CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)
(2) Projected Cachuma Project delivery is 0 to 2,813 AFY. District projects Cachuma Project carryover water of 291 to 1,509 AFY. District’s current maximum Cachuma allocation is 2,813 AFY. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) Projected SWP delivery is 682 AFY which represents the most current understanding of the multiple dry water-year yield from the SWP (31% delivery of max allocation at 2,200 AFY). District projects SWP carryover water of 382 to 825 AFY. Current maximum SWP allocation is 2,200 AFY (includes 200 AFY drought buffer). However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(4) CVWD is currently evaluating potential long-term use of recycled water (CVWD, 2015). However, conservative estimate assumes no recycled water available for direct or indirect reuse.

(5) CVWD has banked and utilized 1,000 AFY of State Water Project water. CVWD anticipates utilizing banking programs again between 2015 and 2040. (McDonald, 2016)

(6) Does not include potential additional reduction of demand of 10 percent for period 2020-2040 utilizing water enhanced demand management measures for urban and agricultural customers.

(7) The difference represents the sum of supplies minus demands. The CVWD desires to maintain a positive supply or contingency of a minimum of 200 AFY in order to account for unforeseen changes in supplies or demands.

5.5 MINIMUM THREE YEAR SUPPLY

The UWMP must also include an analysis of the minimum three-year supply. The UWMP Guidebook indicates, “This will reflect the combined availability of all water sources and will assume the same hydrology as was noted during the historical multiple-dry year period”.

For short-term water reliability, the District relies on the many possible sources available. These short-term supplies include local groundwater, local surface water from Lake Cachuma, imported State Project water, exchanges with other water districts on the central coast, local storage, and an emergency connection to Casitas Municipal Water District. Additional emergency procedures are summarized in Section 6.

The District evaluated minimum water supplies available during the period 2016 to 2018. Normal water-year water supplies are approximately 4,920 AF (see Table 5-2 for details). The District would have a three-year minimum water supply total of approximately 6,100 AF in 2016, 6,070 AF in 2017, and 5,420 AF in 2018 as summarized in Table 5-5 (also see Appendix D, Table 8-4). The District anticipates no water supply deficit for the period 2016 to 2018. CVWD anticipates that groundwater pumping within the basin would be increased to offset increased water demands. In addition, the CVWD could implement additional programs to increase supplies and/or water conservation/demand management measures to reduce demands.

TABLE 5-5
ESTIMATED THREE-YEAR MINIMUM WATER SUPPLY 2016-2018

<table>
<thead>
<tr>
<th>Supplies (AFY)</th>
<th>Normal</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (1,2,3)</td>
<td>4,920</td>
<td>6,100</td>
<td>6,070</td>
<td>5,420</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016. All values in AFY and rounded.
(1) Current conservative estimate of long term average for CVWD pumping is approximately 1,400 AFY which is consistent with the Basin sustainable yield; annual average CVWD groundwater pumping is approximately 1,500 AFY (1984-2015); CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands. (McDonald, 2016)
(2) Based on District’s current maximum Cachuma Project allocation of 2,813 AFY. In addition, the District could use Cachuma Project carryover water. However, the District understands that future deliveries will be less than the maximum allocation. (McDonald, 2016)
(3) Based on District’s current maximum SWP allocation of 2,200 AFY (includes 200 AFY drought buffer program). In addition, the District could use SWP carryover water. However, the District understands that future deliveries will be less than the maximum allocation.
SECTION 6: WATER SHORTAGE CONTINGENCY PLANNING

6.1 UWMP REQUIREMENTS

This section will include the following requirements:

- Provide an urban water shortage contingency analysis that specifies stages of action and an outline of specific water supply conditions at each stage. (CWC, 10632(a) and 10632(a)(1))
- Identify actions to be undertaken by the urban water supplier in case of a catastrophic interruption of water supplies. (CWC, 10632(a)(3))
- Identify mandatory prohibitions against specific water use practices during water shortages. (CWC, 10632(a)(4))
- Specify consumption reduction methods in the most restrictive stages. (CWC, 10632(a)(5))
- Indicated penalties or charges for excessive use, where applicable. (CWC, 10632(a)(6))
- Provide an analysis of the impacts of each of the actions and conditions in the water shortage contingency analysis on the revenues and expenditures of the urban water supplier, and proposed measures to overcome those impacts. (CWC, 10632(a)(7))
- Provide a draft water shortage contingency resolution or ordinance. (CWC, 10632(a)(8))
- Indicate a mechanism for determining actual reductions in water use pursuant to the water shortage contingency analysis. (CWC, 10632(a)(9))

6.2 PROHIBITIONS, CONSUMPTION REDUCTION METHODS, AND PENALTIES

6.2.1 Mandatory Prohibitions on Water Wasting

Prohibition on waste of water usage was originally enacted in Ordinance No. 90-1 (copy provided in Appendix H) and has been restated in Ordinance No. 15-2 (copy provided in Appendix H).

Examples of specific restrictions and prohibited wasteful practices include, but not limited to, the following: no use of running water for hosing or washing down driveways, walkways, and buildings; restaurants are to refrain from serving water unless requested by customers; no outside watering between 10:00 a.m. and 4:00 p.m. by hand or moveable landscape irrigation system; no outside watering between 8:00 a.m. and 6:00 p.m. by a fixed landscape irrigation system; no watering after measurable rainfall events; controls on boat and vehicle washing; no use of water which results in runoff beyond the immediate area of use; and leaks must be repaired within seventy-two (72) hours of discovery or notification by the District.
6.2.2 Consumption Reduction Methods

Under normal water supply conditions, potable water production and deliveries figures are recorded monthly. Total deliveries are compared monthly with available supplies. A water supply report is generated for the Manager showing how the supply compares to the estimated demand for the year. This report is then presented to the Board its regular meeting each month.

During a Stage I or Stage II water shortage, weekly production will be collected and reported to the District Engineer. The Engineer compares the weekly production to the target weekly production to verify that the reduction goal is being met. Weekly reports are forwarded to the Manager. Monthly reports are presented to the Board of Directors at their regular meetings. If reduction goals are not met, the Engineer will determine where allotments are being exceeded and contact that customer directly in an effort to correct the problem. During a Stage III water shortage, the procedure listed above will be followed, with the addition of a daily production report to the Manager.

6.2.3 Water Allotment Methods

The District has established the allotment methods for each customer type as noted in Table 6-1 below.

TABLE 6-1

WATER ALLOCATION METHOD BY CUSTOMER TYPE

<table>
<thead>
<tr>
<th>Customer Type</th>
<th>Allocation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>Percentage Reduction - vary by efficiency</td>
</tr>
<tr>
<td>Residential</td>
<td>Percentage Reduction – can vary by occupants per household</td>
</tr>
<tr>
<td>Commercial</td>
<td>Percentage Reduction</td>
</tr>
<tr>
<td>Industrial</td>
<td>Percentage Reduction</td>
</tr>
<tr>
<td>Public Authority</td>
<td>Percentage Reduction</td>
</tr>
<tr>
<td>New Customers</td>
<td>Estimate of similar uses apply</td>
</tr>
<tr>
<td>New Developments</td>
<td>No new services for new development during a declared water shortage of Stage III</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016.

Table 6-2 below indicates the proposed water allocated to each customer type by rationing stage during a declared water shortage. Individual customer allotments are based on a 5-year period. This gives the District a more accurate view of the usual water needs of each customer and provides additional flexibility in determining allotments and reviewing appeals. However, no allotment may be greater than the amount used in the most recent year of the five-year base period.
The District General Manager shall calculate each customer's allotment according to the established rationing allotment method. The allotment shall reflect seasonal patterns. Each customer shall be notified of his or her classification and allotment by mail before the effective date of the Water Shortage Emergency. New customers will be notified at the time the application for service is made. In a disaster, prior notice of allotment may not be possible; notice will be provided by other means. Any customer may appeal the assigned water allotment on the basis of incorrect calculation or health and safety.

TABLE 6-2
WATER USE RESTRICTION (ALLOCMENTS)

<table>
<thead>
<tr>
<th>User Type</th>
<th>Allotments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage I</td>
</tr>
<tr>
<td>Agriculture</td>
<td>85%</td>
</tr>
<tr>
<td>Residential (1)</td>
<td>85%</td>
</tr>
<tr>
<td>Commercial</td>
<td>85%</td>
</tr>
<tr>
<td>Industrial</td>
<td>85%</td>
</tr>
<tr>
<td>Public Authority</td>
<td>85%</td>
</tr>
</tbody>
</table>

Notes:
(1) Exceptions may be made on a case by case basis for high occupancy dwellings. (CVWD, 2016)

6.2.4 Excessive Use Penalties

Excessive use penalties are not included in the current District policies and regulations. However, the District may impose excessive use penalties if additional conservation measures are deemed necessary.

6.3 EMERGENCY RESPONSE PLAN

In 1997, in accordance with the requirements of Assembly Bill 11X, the District developed its Emergency Response Plan (ERP). A copy of this Plan is provided in Appendix F. The District’s plan contains procedures for the distribution of potable water in a disaster. These procedures are consistent with guidelines prepared by the California State Office of Emergency Services. The District’s ERP identifies various levels of natural and man-caused emergencies and provides examples of actions for a number of given emergencies, including earthquake and power failure.

The District owns and operates sufficient groundwater production capacity to meet demands during a water supply shortage. In addition, specific water-critical customers (such as hospitals, schools, and a few individual customers with medical conditions dependent on continuous water availability) have been identified. Emergency potable water distribution sites have been identified as City Hall, Carpinteria Middle School, Carpinteria Valley Water District offices, and Carpinteria High School. Standby procurement documents are being developed for emergency bulk purchase of bottled water. Standby arrangements with several local trucking firms to
provide tankers to distribute potable water (certified by the California Division of Drinking Water) for safe transportation of potable water are being developed. All existing water supply storage, treatment, and distribution, facilities are now inspected weekly.

In the event of a major earthquake the District's Emergency Response Plan (Appendix F) includes procedures for assessment of damage, public notification and procedures to determine appropriate actions to restore service as quickly as possible. It is likely in such an event that District customers will be required to ration water to some degree. The District would implement its Water Shortage Contingency Plan, defined below, if necessary.

In the event of a flood that knocks out transmission or distribution lines the District staff will assess the damage and re-valve to get water to where it is needed. This type of disaster will probably result in isolated damage that can be worked around until the damage can be repaired. The District distribution is looped and in most cases water could be rerouted to any area of the District.

In the event of a power outage, the District has generators with automatic transfer switches on all the major booster stations and a portable 300 kW generator to run the wells. Critical treatment equipment is all run from an uninterruptible power supply (UPS). All future treatment equipment will be equipped with an automatic transfer switch and emergency generator.

To offset future potential water shortages due to drought or disaster, the District is considering additional water supplies. These supplemental water supplies are summarized in Section 4.

6.4 WATER SHORTAGE CONTINGENCY PLANNING

In order to plan for a reliable water supply District staff examined both the possibility of short-term and long-term shortages. A short-term water shortage could result from a disaster such as an earthquake, flood, or even a widespread power outage. A long-term water shortage would most likely result from a long period of drought in the region. Durations of severe droughts in this region have historically lasted 3 to 5 years.

Costs of demand management or supply augmentation options to reduce the frequency and severity of shortages are now high enough that planners must look more carefully at the costs of not having reliable supplies to make the best possible estimate of the net benefit of taking specific actions, hence the term “reliability planning.” To plan for long-term water supply reliability, planners examine an increasingly wide array of supply augmentation and demand reduction options to determine the best courses of action for meeting water service needs. Such options are generally evaluated using the water service reliability planning approach. Reliability planning requires information about the following: (1) expected frequency and severity of shortages; (2) how additional water management measures are likely to affect the frequency and severity of shortages; (3) how available contingency measures can reduce the impact of shortages when they occur.
The District Board of Directors has declared a water shortage emergency in response to significant drought-related cutbacks in supply from Lake Cachuma. A summary of District drought related ordinances is provided below. Copies of selected District Resolutions are provided in Appendix H.

6.4.1 Water Shortage Contingency Ordinance/Resolution

The District adopted Resolution No. 547 in 1990 to address water shortage emergency (copy provided in Appendix H). The District adopted Ordinance No. 90-1 in 1990 to address drought regulations and water conservation standards (copy provided in Appendix H). Ordinance No. 90-2, also adopted in 1990, addresses restrictions on uses of water within the District (copy provided in Appendix H). Ordinance No. 90-3, adopted in 1990, addresses restriction upon the delivery of water within the District (copy provided in Appendix H).

On February 12, 2014, the District adopted Resolution 972, declaring a Stage One (1) Drought Emergency to address drought conditions and request a 20 percent voluntary reduction in consumption from District customers. Resolution 980 was adopted in August 2014, incorporating prohibited activities defined by the State Water Resources Control Board’s (SWRCB) Drought Emergency Water Conservation Regulation, and financial penalties for infraction of those prohibited activities. Ordinance 14-1, consolidating Resolutions 972 and 980, adding new requirements, and establishing enforcement measures was adopted in October 2014 (copy provided in Appendix H). Ordinance 15-2 was adopted in May 2015 which declared a Stage Two (2) Drought Condition with mandatory water use restrictions to achieve an immediate reduction in local municipal and industrial (M&I) water consumption by 20 percent in order to comply with the mandated state-wide reduction in water usage by 25 percent. In addition, Ordinance 15-2 incorporates additional prohibited activities and watering restrictions (copy provided in Appendix H).

The District is well prepared to operate effectively in the face of a catastrophic water supply interruption using the Emergency Response Plan (Appendix F) and the District Ordinances (Appendix H) for guidance.

6.4.2 Stages of Action and Reduction Goals

The District will use a three-stage rationing plan to invoke during declared water shortages. The rationing plan includes voluntary and mandatory rationing, depending on the causes, severity, and anticipated duration of the water supply shortage. Table 6-3 summarizes the District’s water rationing stages and reduction goals which range from 15 percent to 50 percent. The District will consider adding additional stages (i.e., up to total of 5 stages) in the near future.

6.4.3 Priority by Use

In the event of a water shortage emergency, water allotments will be established for all customers on a percentage basis. All customers will be required to reduce use at the same percentage. First priority is given to health and safety in all cases. It is not believed that a stage 3 shortage will jeopardize the health or safety of any District customers. If a customer chooses to protest their allotment due to hardship, they may file a claim at the District for review by the
General Manager and, if appropriate, by the Board of Directors. A decision to adjust an allotment will be based primarily on a health and safety basis.

TABLE 6-3
WATER SHORTAGE STAGES AND GOALS

<table>
<thead>
<tr>
<th>Shortage Condition</th>
<th>Stage</th>
<th>Customer Reduction Goal</th>
<th>Type of Rationing Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 15 Percent</td>
<td>1</td>
<td>15%</td>
<td>Voluntary</td>
</tr>
<tr>
<td>15 to 30 Percent</td>
<td>2</td>
<td>25%</td>
<td>Voluntary</td>
</tr>
<tr>
<td>30 to 50 Percent</td>
<td>3</td>
<td>50%</td>
<td>Mandatory</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016.

6.4.4 Health and Safety Requirements

In Stage 1 and 2 shortages, customers may adjust either interior or outdoor water use (or both), in order to meet the voluntary water reduction goal. However, under Stage 3 mandatory rationing programs, the District established a health and safety allotment of 55 gallons per capita per day (gpcd) and as low as 43 gpcd for short-term severe water shortages. This value equals 2,684 cubic feet per person per year for long-term water shortages. Stage 3 mandatory rationing, which is likely to be declared only as the result of a prolonged water shortage or as a result of a disaster, would require that customers eliminate outdoor landscape watering and make changes in their interior water use habits (for instance, not flushing toilets unless “necessary” or taking less frequent showers).

6.4.5 Water Shortage Stages and Triggering Mechanisms

The water shortage response is designed to provide a minimum of 50 percent of normal supply during a severe or extended water shortage (Stage 3). The rationing program triggering levels shown below were established to ensure that this goal is met. Water shortage stages are provided in Table 6-4.

The District’s potable water sources include local groundwater, local surface water from Lake Cachuma, and imported State Water Project water. Rationing stages may be triggered by a supply shortage in one source or a combination of sources. Shortages may overlap Stages, therefore triggers automatically implement the more restrictive Stage. Criteria for triggering the rationing stages are shown in Table 6-4 below. A decision by the General Manager and ratification by the Board of Directors will be the mechanism by which the District will declare stage 1, 2 or 3 rationing requirements.
TABLE 6-4
WATER SHORTAGE STAGES AND TRIGGERING MECHANISMS

<table>
<thead>
<tr>
<th>Percent Reduction of Supply</th>
<th>Stage 1 Up to 15%</th>
<th>Stage 2 15 - 30%</th>
<th>Stage 3 30-50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Supply Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Deficit</td>
<td>(1) Estimated demand is projected to exceed total supply by up to 15%. And (2) Below “normal” year is declared. Or</td>
<td>(1) Estimated demand is projected to exceed total supply by 15-30%. And (2) Below “normal” year is declared. Or</td>
<td>(1) Estimated demand is projected to exceed total supply by over 30%. And (2) Fourth consecutive below “normal” year is declared and carryover water is depleted. Or</td>
</tr>
<tr>
<td>Water Quality</td>
<td>(1) Contamination of up to 15% of water supply (exceeds primary drinking water standards). Or</td>
<td>(1) Contamination of 15-30% of water supply (exceeds primary drinking water standards). Or</td>
<td>(1) Contamination of over 30% of water supply (exceeds primary drinking water standards). Or</td>
</tr>
<tr>
<td>Disaster Loss</td>
<td>As Necessary.</td>
<td>As Necessary.</td>
<td>As Necessary.</td>
</tr>
</tbody>
</table>

Notes:
Source: CVWD, 2016.

The General Manager shall report to the Board of Directors as needed with an assessment of the current water supplies, current water use trends, predicted weather conditions, and recommended water shortage stage. The Board of Directors may declare that a water shortage condition exists and implement the appropriate demand reduction goals and measures in response to current and/or predicted water availability conditions. During implementation of the water shortage stages, the District will perform water use/demand monitoring procedures. The District routinely monitors water use throughout the service area and can detect irregularly high water use. In general, monitoring of water use is performed during each water shortage stage, but may be intensified if conditions warrant.
6.4.6 Current Stage

The District Board of Directors approved Ordinance 15-2 on May 13, 2015, which authorized staff to implement Water Shortage Stage 2 measures. A copy of Ordinance 15-2 is provided in Appendix H. The District will select from a menu of options to achieve the Stage 2 demand reduction goal as provided in Table 6-3.

6.5 REVENUE AND EXPENDITURE IMPACTS AND MEASURES TO OVERCOME IMPACTS

Surplus revenues that the District collects are put into reserves for Capital Improvements and for emergencies. The District has a policy to maintain approximately 6 months of operating expenses in reserves. Since the District rates are structured such that 36 percent of revenue is collected through sales, 59 percent through service charge and 5 percent through other sources, a decrease in sales has a limited impact on revenues. Given District reserve policy, immediate rate increases would not be necessary to meet expenses. Under the current conditions the District could withstand an estimated 14-month period under a Stage 3 condition with existing expenditure levels before exhausting its reserves. No adjustments are anticipated in short-term expenditures as the result of water shortage stages.
SECTION 7: DEMAND MANAGEMENT MEASURES

7.1 UWMP REQUIREMENTS

This section will include the following:

- Retail suppliers shall provide a description of the nature and extent of each demand management measure implemented over the past five years. The description will address specific measures listed in Code, including water waste prevention ordinances, metering, conservation pricing, public education and outreach, water loss control, conservation program coordination and staffing, and other demand management measures that significantly impact water use. (CWC, 10631(f)(1))

- Wholesale suppliers shall describe specific demand management measures listed in Code, including metering, public education and outreach, conservation program coordination and staffing, distribution system asset management program, supplier assistance program, and other demand management measures that significantly impact water use. (CWC, 10631(f)(2))

- CUWCC members may submit their 2013-2014 CUWCC BMP annual reports in lieu of, or in addition to, describing the DMM implementation in their UWMPs. This option is only allowable if the supplier has been found to be in full compliance with the CUWCC MOU. (CWC, 10631(i))

7.2 INTRODUCTION

“Demand management,” as applied to water conservation, refers to the use of measures, practices, or incentives implemented by water utilities to permanently reduce the level or change the pattern of demand for a utility service. Historically, the District has actively pursued water demand management. There have been and continue to be many programs implemented by the District and Santa Barbara County. The Urban Water Management Planning Act requires the UWMP include a description of 7 specific demand management categories (DMMs). (CWC, 10631(f)(1)) These categories include the following: water waste prevention ordinances, metering, conservation pricing, public education and outreach, water loss control, conservation program coordination and staffing, and other demand management measures that significantly impact water use.

The California Urban Water Conservation Council (CUWCC) was formed in 1991 to increase efficient water use statewide through partnerships among urban water agencies, public interest organizations, and private entities. The goal of the CUWCC is to integrate urban water conservation Best Management Practices (BMPs) into the planning and management of California's water supplies. CUWCC is composed of hundreds of urban water suppliers and environmental organizations. The District is a signatory to the CUWCC document titled, Memorandum of Understanding Regarding Urban Water Conservation in California (MOU, CUWCC, 2007) and is therefore a member of the CUWCC. This MOU includes a list of 14
BMPs for demand management which are very similar to the measures required by the UWMP Act. Copies of the District’s most recent CUWCC reports are provided in Appendix J.

7.3 DEMAND MANAGEMENT MEASURES

The District administers several demand management programs for residential, commercial, and agricultural customers. These measures will be organized according to the following categories as required by the UWMP (CWC, 10631(f)(1)):

- water waste prevention ordinances
- metering
- conservation pricing
- public education and outreach
- water loss control
- conservation program coordination and staffing
- other demand management measures that significantly impact water use.

7.3.1 Water Waste Prevention Ordinances

The District has an existing water waste ordinance. This ordinance is a beneficial tool to curb misuse and waste of potable water within the District. Provisions of the ordinance can be utilized during periods of normal water supply and supply deficiency. Violation of this ordinance is subject to District penalties. A copy of this ordinance is included in Appendix G.

The District will include the following efforts:

- Existing Water Waste Ordinance will be revised to include specific prohibition against use of single pass cooling towers, non-recirculating vehicle wash and laundry facilities for all new users. During the development review of CII properties, plan check will include a water efficiency review in which this ordinance will be enforced.
- Existing Water Waste Ordinance will be revised to specific prohibitions against inefficient water use in commercial and industrial uses and inefficient water use in landscape irrigation for all existing and new users.
- Existing water shortage contingency planning documents will be reviewed and updated to meet up to date policy and use the latest water supply and demand data.

The District has a water waste Ordinance (15-2, see copy in Appendix H) with specific prohibitions against inefficient water use in commercial and industrial uses and inefficient water use in landscape irrigation.

7.3.2 Metering

The District meters all water sources and all water sold to customers. Accuracy of the District’s meters is generally 98 percent to 102 percent.
7.3.3 Conservation Pricing

The District currently has inclining block water rates where the cost per unit of water increases with the quantity of water used for all accounts. District water rates are based on cost of providing services to all accounts. The District’s water rates provide an incentive for customers to conserve water. Customers are billed monthly for 100 percent of the volume of water used. Meter fees (2016-2017; see copy in Appendix E) range from $42.83 per month (5/8-inch) to $3283.25 (8-inch). The commodity rate for agricultural customers is $1.91 per 100 cubic feet (HCF) to $2.94 per HCF depending on usage and elevation of the property. The commodity rate for all residential, commercial, and industrial customers is $3.63 per HCF to $5.19 per HCF depending on usage and elevation of the property. In addition, the District has an additional fee for capital improvement program ($16.50 to $275 per month) and drought surcharge ($4.20 to $70.00 per month). The District has the legal authority to evaluate and set rates for its customers.

An inclining block rate structure for water service is similar to a utility rate structure in place for electricity and natural gas. In an inclining block rate structure, the unit price increases with each successive block, resulting in an increase in the incremental and the average cost of water with increased customer usage. For inclining block rate structures, the block (quantity) shift points are generally based upon the unique demand characteristics of each user class and are focused on user demand points to enhance water usage awareness. An inclining block rate tends to decrease water usage, (i.e., promote water conservation), due to the economic disincentive to waste water. Inclining block rate pricing may also include seasonal rates and/or excess-use surcharges to reduce peak demands during summer periods.

7.3.4 Public Education and Outreach

The District recognizes the continued need for a public information program to maintain and increase the public's awareness of water and the need to use it wisely. Public information is used to promote the water conservation ethic and inform the public of the benefits derived from conserving a valuable resource. Providing current water conservation information is a key part of the District's program activities. The on-going programs have proven successful and are well received by customers. Increased educational and outreach programs are especially important during the current drought. It is recommended that the District continue to support these public information programs including various special events, sponsor activities, and prepare materials that promote awareness of demand management and water conservation issues. Several of these events, activities, and materials are described below.

The District prepares an annual Consumer Confidence Report (CCR) that is designed to inform customers about the quality of water and services provided. The District's CCR also includes water conservation elements. A copy of the current CCR is provided in Appendix I. In addition, the District has prepared news releases, water bill inserts, announcements, and brochures to convey a water conservation message. Materials should be available in English and Spanish also. Examples of public information are provided in Appendix J. The District could enhance the existing website (www.cvwd.net) to include additional conservation related information.
May is “Water Awareness Month.” In addition, the USEPA declared August “Water Efficiency Month.” These events are an excellent opportunity to communicate with customers the importance of water conservation. The District could distribute preprinted materials available for free or purchase from sources such as American Water Works Association, USEPA, or other water agencies. Materials should be available in English and Spanish also. Examples of public information are provided in Appendix J.

District staff makes presentations to community groups such as schools, farm associations, public service clubs, and Chambers of Commerce. Staff are available to discuss the impact of short-term and long-term water supply issues. Bilingual speakers could be available for English and Spanish audiences also. It is recommended that the District continue to support these public information programs.

Primary focus of the school education programs is to educate children on water resource issues, water use, and conservation. The program educates school children about where water comes from, how it is used, and ways to conserve water. School education programs help future water users realize that water in California is a precious commodity that cannot be taken for granted. The District provides materials available to download and print from the website http://www.WaterWiseSB.org and in conjunction with Santa Barbara County Water Agency provides school assembly presentation. Materials and classes must meet State and local education requirements.

7.3.5 Water Loss Control

The District's water loss control program includes main replacement, system water audits, system leak detection and repair, meter testing and replacement, valve exercising, and main flushing. The District completed a Strategic Capital Facilities Plan in 1999. This document described the status of the District’s primary facilities, identified issues facing the District, and formulated the District’s options for addressing these issues. The District continues to add facilities for replacement into its capital replacement program. Approximately $10,000,000 dollars of replacement projects have been identified. The District anticipates approximately 20 years to complete the current list of projects. A copy of the District’s fiscal year 2014-2015 water audit is provided in Appendix N.

Additional District efforts include the following:

- Continue to meet current standards for water system losses of below 10 percent. The District will continue to use the AWWA calculator.

- Economic values of water loss will be generated using recent expense data and an avoided cost model.

- A component analysis on the water system will be completed in 2017 and every 4 years after to identify the various components of real losses.

- Identified real losses will be analyzed and a determination will be made as to the cost effectiveness of potential water loss reduction actions. If any individual or group of
actions are determined to be cost effective, the District will begin a program to implement such actions.

- All reported leaks, including the District’s side or customer’s side, are currently addressed immediately. If a customer's use increases by 50 percent, after reading the meter, then the District flags the account and the customer is contacted to let them know they may have leak.

- The District is also in the process of conducting a study to determine the feasibility of implementing a large scale meter replacement and AMI project. If it is determined to be feasible then the District will be able to reduce non-revenue water loss significantly and better conduct water loss component analyses.

7.3.6 Conservation Program Coordination and Staffing

A Water Conservation Coordinator may provide the following: review and analyze water use on a District-wide basis; prepare and disseminate public information materials; provide follow-up and response to inquiries or complaints; coordinate water conservation programs; compile and verify data; coordinate requests for speakers on water topics; and participate in local, regional, and state organizations that promote water conservation. The District provides water usage reports to water users upon request and are encouraged to request data as needed. These activities result in high consumer awareness of water use practices. Currently, the District Engineer manages the conservation programs within the District. In addition, the District has one staff person that implements the District's conservation programs.

It is recommended that the District consider budgeting for and hire a full-time Water Conservation Coordinator responsible for preparation, implementation, and management of the demand management measures. A copy of the District's BMP reports is provided in Appendix J.

7.3.7 Other Demand Management Measures

7.3.7.1 Wholesale Agency Assistance Programs

Although the District is not a wholesaler, it does participate in regional programs. The District has participated in planning and programs concerning water demand management issues and urban water management in Santa Barbara County and the State of California. Additional benefits of participation include enhanced water resource flexibility in the event of operational disruption, extended drought, or other emergency. Selected examples of regional participation include the following organizations:

- Santa Barbara County
- Central Coast Water Authority
- Cachuma Operation and Maintenance Board.

The District intends to continue to participate in these organizations to reinforce relationships with other member agencies to enhance water resource flexibility and proper response to operational disruption, extended drought, or other emergency.
7.3.7.2 Residential Programs

Survey Programs
Residential water surveys can be mailed to customers to conduct a self-audit and return the questionnaire to the District for tabulation. The survey could be added to the District's website for easy access by all customers. Formal audits are conducted by trained District employees and are generally at the request of a homeowner. However, the District may also invite, via direct mail (also email and web page), all single-family customers to participate in the survey. Homes built before 1980 can be targeted for this program, since they were constructed prior to revisions in plumbing codes requiring water conserving plumbing fixtures in new construction. The District may conduct focused annual water use audits of the new residential customers.

An interior water audit generally includes the following elements:

- Identify types of water usage
- Estimate the amount of water used for each device or fixture
- Recommend fixture repair options if necessary
- Identify alternative water usage device or fixture possibilities
- Instruct customer on proper installation and use of plumbing retrofit kits
- Inform customer on how to read their own water meter
- Inform and educate residents to use and conserve water efficiently
- Inform customers of current District conservation programs.

Interior water savings achieved as the result of common water audits is difficult to predict, however savings of 10 to 30 percent have been reported (Deoreo, 2001; Bruvold, 1993; Nelson, 1992). A moderate degree of lifestyle change may be required to achieve maximum water savings. However, the installation of the plumbing retrofit kit will result in substantial water savings without a significant change in behavior. Audits for older single-family homes tend to produce more savings, while newer multiple-family homes tend to produce less savings per housing unit. In addition, customers benefit from reduced energy utility bills due to less hot water used.

Plumbing Retrofit
Plumbing retrofit items may consist of a device to displace water in the toilet tank, a low flow showerhead, flow restrictor for the sink, dye tablet to locate leaks in the toilet, hose washers, hose repair kit, and outdoor hose sprayer. The plumbing retrofit program may benefit existing customers by reducing their water consumption with little change in lifestyle. Water savings resulting from retrofit fixtures depends on many factors including age of existing model, model of new fixture, participation rate, number of units installed per household, number of residents per household, and acceptance by customer. Installation of retrofit fixtures in older single-family homes tends to produce more savings, while newer multiple-family homes tend to produce less savings per housing unit. For the purposes of this document, calculations of conservative water savings are based on the average of 2.4 residents per household.
A conservative estimate of interior water savings achieved due to retrofit with only the showerhead and faucet restrictor for single-family and multiple-family homes ranges from approximately 34 to 80 gallons per day (gpd) per housing unit (Deoreo, 2001; Bruvold, 1993; Nelson, 1992; Maddaus, 1987).

Significant water savings may be generated due to combining measures such as water audits, fixture leakage reduction, and installation of retrofit kits. A formal household water audit implemented in conjunction with a retrofit kit and/or exterior audit would produce estimated conservative water savings of approximately 20 to 50 gpd per household (CUWCC, 2003; Bruvold, 1993; Nelson, 1992).

In compliance with this BMP, the District provides the following:

- Indoor surveys are offered anytime a high bill or leak detection investigation is requested from a customer.
- District advertises free water saving surveys on its bills, newsletters and website.
- In order to increase the number of surveys completed, the District may provide new financial incentives if a customer agrees to a survey, allow self-surveys by providing a check list for customers, and increase its outreach and education efforts to inform customers of the potential financial benefits.

Landscape Water Survey

Exterior residential water audits may include one of two types - routine and detailed. A routine exterior water audit generally includes the following elements:

- Estimate the size of landscaped area
- Assess in-ground irrigation systems for leaks and broken sprinklers
- Measure precipitation rate of irrigation system
- Evaluate automatic control settings
- Develop suggested irrigation schedules
- Provide customer with public education materials
- Inform customers of current District landscape conservation programs.

Examples of public education materials titles currently suggested include the following: ”How to be Water-Wise in Your Garden”, “Sustainable Landscaping”, “Gardening with California Natives”, “Working with Your Gardener”, and “Save Water Outside”.

Detailed exterior audits include all of the elements of the routine audit in addition to irrigation uniformity audits and soil assessments. Average exterior water savings achieved as the result of routine water audits for single-family residential is approximately 6 gpd per housing unit (Bruvold, 1993; Nelson, 1992). However, water savings ranging from 10 to 50 gallons per day may be generated via detailed exterior audits (CUWCC, 2000; Hawn, 1997).

- Outdoor surveys are offered anytime a high bill or leak detection investigation is requested from a customer.
• The District advertises free water saving surveys on its bills, newsletters and website.

• In order to increase the number of surveys completed, the District may provide new financial incentives if a customer agrees to a survey, allow self-surveys by providing a check list for customers, and increase its outreach and education efforts to inform customers of the potential financial benefits.

High Efficiency Clothes Washing Machine Financial Incentive Programs

On average, clothes washers use approximately 22 percent of the interior water demand for an average single family home (AWWA, 1999). New clothes washers generally use less water and energy compared to older appliances. Recent Federal standards require front-loading clothes washers manufactured after 2015 to be 15 percent more energy efficient and 35 percent more water efficient compared to similar but older models, while top-loading clothes washers to be 33 percent more energy efficient and 19 percent more water efficient compared to similar but older models. Some of the new high-efficiency clothes washers use up to 52 percent less water and up to 63 percent less energy per load compared to older less efficient models (Vickers, 2001). Water and energy savings vary with the new models, however the CUWCC (2005) estimates water savings of approximately 5,100 gallons per new high-efficiency clothes washers. Total savings for water, wastewater, and energy were estimated to be $43 to $106 per year (CUWCC, 2003). High efficiency models cost from $600 to $1,100 (compared to $300 to $700 for conventional units) which may reduce the rate of participation. Examples of customers that would derive maximum benefit from this clothes washer rebate program include multifamily residential units and laundromats with multiple washing machines per location.

The District offers a rebate of $150 for high efficiency residential clothes washers. Rebates are based on the projected combined water and energy savings. The District could encourage the City of Carpinteria to require developers of new homes within the District to install high-efficiency clothes washers in future developments.

In compliance with this BMP, the District provides the following:

• The District currently has a high-efficiency clothes washer rebate program in place. As a result of the current drought the District has increased funding for this popular rebate program. compliance with this BMP, the District will be increasing the funding of this program and seeking additional funding.

• Additionally, the District documents whether a home is equipped with high-efficiency clothes washer during water savings surveys. The District will maintain a database of customers with high-efficiency washers.

WaterSense Specification Toilets

WaterSense Specification toilets (WSST) can use up to 20 percent less water than the current federal standard, while still providing equal or superior performance. The WaterSense label is used on toilets that are certified by independent laboratory testing to meet rigorous criteria for both performance and efficiency. Only high-efficiency toilets that complete the third-party certification process can earn the WaterSense label. High-efficiency (also known as ultra-low flush toilets - ULFT) commonly use approximately 1.28 gallons or less per flush. However,
some types use as little as 0.5 gallons per flush. This program will provide one of the most significant water savings programs. An added benefit is the reduction of water demand on the District's system, thus delaying or eliminating capital improvements. Higher savings are found in high-density housing and commercial/industrial settings. Savings also persist over the entire lifespan of the toilet (approximately 25 years). Water conserved in WSST replacement programs have been shown to be 1.9 to 5.4 gallons of water savings per flush per toilet which equates to 12 to 45 gallons per replacement per day. For the purposes of this report estimated savings is 40 gallons per toilet per day for single-family units and 50 gpd for multi-family units.

Alternative methods for promoting toilet replacement include: (1) implementing a retrofit on resale ordinance (via City of Carpinteria) where homes are required to retrofit to low flow fixtures upon a resale, and (2) direct distribution programs. Retrofit on resale ordinances is inexpensive from the District's perspective since costs are shifted to the home seller/purchaser. These ordinances tend to be unpopular with the real estate community and home sellers, since it may impede a sale due to timing and may require replacing floor coverings around the toilet. Communities in California which had a retrofit on resale ordinance include the Monterey Peninsula Water Management District, North Marin Water District, City of San Diego, City of San Francisco, and City of Santa Monica (DWR website). Direct distribution programs consist of providing a WSST (1.6 gal/flush or less) in exchange for a customer provided toilet (generally 3.5 to 7 gal/flush). This alternative is generally effective but may have an increased administrative cost due to the need for staffing the distribution center and also for disposal of the retired toilets.

California has a non-compliant fixture disclosure law for real estate transactions. The Governor signed SB407 on October 11, 2009. The SB407 language was incorporated as California Civil Code, Title 2, Chapter 2, Part 4, Division 2, Article 1.4, Section 1-3. On or before January 1, 2019, all noncompliant plumbing fixtures in multiple-family residential and commercial properties must be replaced by the property owner with water-conserving plumbing fixtures. For single-family residential property, the compliance date is January 1, 2017. The law requires, on and after January 1, 2017, that a seller or transferor of a single-family residential, disclose to the purchaser or transferee, in writing, the specified requirements for replacing plumbing fixtures and whether the real property includes noncompliant plumbing. For multiple-family residential and commercial property, the date is January 1, 2019.

It should be recognized that natural replacement (approximately 3 to 4 percent per year) will eventually replace all of the older, high water use models with 1.28 gal/flush or less toilet models as required by the revised plumbing code. However, this would likely take more than 25 years to complete. WSST incentive programs accelerate the water savings and as such can help defer or eliminate other capital investment needs.

Recent proposed federal legislation intending to repeal the low-flow plumbing standards, in part due to anecdotal complaints of poor performance of WSSTs, was defeated when proposal supporters could not produce customer complaints and opponents showed empirical data indicating consumer satisfaction was high.
The District plans to implement the following actions to increase residential conservation:

- The District currently has a Residential ULFT rebate program in place and has substantially increased funding of the program
- The District will be noting whether a home is equipped with ULFT during water savings surveys. The District will maintain a database of customers with ULFT toilets.

7.3.7.3 Commercial-Industrial-Institutional Programs

Objective of this program is to encourage the replacement of fixtures commonly found at commercial, institutional (i.e., government and schools), and industrial (CII) sites having the greatest potential water savings. This program targets sites with the largest water savings potential by marketing directly to their owners and corporate headquarters. Examples of CII programs include process water audits, fixture retrofits (WSST, faucets, etc.), coin operated washing machine replacement, and cooling tower improvements.

The District could prepare and distribute surveys to each CII account. The CII Water-Use Survey could be sent to CII customers in 2016 with follow-up surveys in 2018 and 2020. The surveys could be followed by monitoring water usage over the next year to track results. The surveys could include public information regarding water conservation and fixture retrofit programs including WSST replacement.

Estimated water savings for CII programs is 1 percent per year (total of 5 percent). (CUWCC, 2005) Additional water savings may result when combined with other measures such as site audits (landscape irrigation, internal water uses, and cooling tower) and ultra-low flush toilet retrofit programs.

The District plans to implement the following actions to increase conservation within commercial, industrial, and institutional customer categories:

- All Commercial, Institutional, and Industrial accounts are classed and ranked by use through our billing system.
- Currently surveys are offered to CII accounts anytime a high bill or leak detection investigation is requested from a CII customer.
- The District advertises free water saving surveys on its bills, newsletters and website. The District also contacts the largest CII users and offers them surveys directly. In order to increase the number of surveys completed the District will provide new financial incentives if a customer agrees to a survey, allow self-surveys by providing a check list for customers, and increase its outreach and education efforts to inform customers of the potential financial benefits.
- The District has increased its CII rebate budgets in an effort to meet water use reduction goals.
7.3.7.4 Large Landscape Programs

The objective of landscape water use audits is to gather sufficient field data and implement a demand management action plan. This program could provide owners of large landscaped areas (commonly defined as 2 acres or more) with information to enable them to perform timely equipment maintenance and to apply accurate irrigation amounts throughout the year. A landscape water audit generally includes the following elements:

- Estimate size of landscaped area
- Define soil characteristics
- Assess in-ground irrigation systems for leaks and broken sprinklers
- Measure irrigation system uniformity rate
- Evaluate automatic control settings
- Develop suggested irrigation schedules
- Provide customer with public education materials
- Inform customers of current District landscape conservation programs.

Prior to the audits, the District could identify accounts with dedicated irrigation meters and estimate landscape irrigation budgets. These budgets could be discussed with the customers. Dedicated landscape irrigation meters are recommended for large accounts without such meters. District staff could conduct follow-up visits to each customer included in the landscape water use audit program.

Benefits from audits include water and cost savings, as well as landscape health and appearance. Significant reduction in water demand, estimates range from 15 to 50 percent, can be achieved by modifying exterior vegetation and irrigation practices on landscaping (Hawn, 1997; DWR, 1989; CUWCC, 2003; Texas, 2004). In addition, educational materials regarding external landscaping care can be provided.

In addition, the District could coordinate with the City of Carpinteria, schools, and businesses, regarding landscape water audits for local facilities with large landscaped areas. This audit could include the following: applying only the proper amount of water that is required to maintain the landscaped area in a healthy condition, evaluating the condition and efficiency of the irrigation system including the irrigation controllers, pipes, and sprinklers; making adjustments in the irrigation schedules to achieve proper irrigation efficiency; replacing manual irrigation controllers with automatic irrigation controllers capable of automatic shut off when a sudden pressure loss occurs due to a broken system; installation of soil moisture sensors for all automatic irrigation controllers. The District could require annual landscape water audits and efficient irrigation for governmental properties with landscaped areas of one acre or more. This evaluation reduces water wastage.

The State of California created the Model Water Efficient Landscape Ordinance (MWELO). The CADWR updated MWELO in 2015 to increase water efficiency standards. New development projects that include landscape areas of 500 sq. ft. or more are subject to the Ordinance. This applies to residential, commercial, industrial, and institutional projects that require a permit, plan check, or design review. The size threshold for existing landscapes that are being rehabilitated
has not changed, remaining at 2,500 sq. ft. Only rehabilitated landscapes that are associated with a building or landscape permit, plan check, or design review are subject to the Ordinance. The City of Carpinteria’s Municipal Code, Chapter 15.90, Water Efficient Landscaping, includes provisions that apply to landscapes for local development projects.

The District plans to implement the following actions to increase conservation for customers with large landscapes:

- The District currently has a Large Landscape rebate program in place. The District still has funding available for this program.
- The District will be increasing its outreach effort to offer and conduct more surveys with the help of Cachuma Resource Conservation District.
- The District will be conducting a study to better understand large landscape water use in the District. The goal of this study will be to develop a policy regarding large landscape water budgets.

7.3.7.5 Conjunctive Use

Conjunctive use of groundwater and surface water is the planned balanced use of both types of water, so that the supplies and use of both these types of water can be maximized. During wet years, conjunctive use implies that the plentiful surface water supply is used to its maximum, while groundwater use is minimized. This allows for groundwater supplies to be saved and recharged. During dry years, this plentiful groundwater supply can then be used to help ensure that important surface water supplies are not depleted rapidly. Conjunctive use also encompasses the use of surface waters to artificially recharge the groundwater basin during wet years.

The District currently practices conjunctive use of its groundwater and surface water. During recent wet water years, the District maximized its use of plentiful surface water, while groundwater use by the District was reduced. Conjunctive use allows for the creation of a recharged groundwater basin, which can be used as insurance against potential drought or other impacts on the District’s water supply. The District plans to continue to evaluate the feasibility of artificial recharge of the groundwater basin including recharging with Cachuma water and or recycled water.

7.3.8 Agricultural Programs

The District prepared and adopted an Agricultural Water Management Plan (AWMP) in March 2016. The AWMP included many of the measures summarized above. Additional agricultural demand management programs are summarized below.

7.3.8.1 Alternative Land Use

The District could encourage alternative land use by agricultural customers within the District. Alternative land uses could include alternative crop types and or fallowing of land. However, there are limited known properties with exceptionally high water duties or whose irrigation contributes to significant problems located within the District boundaries.
7.3.8.2 On-Farm Irrigation Capital Improvements

The District is evaluating an agricultural irrigation efficiency program which offers financial incentives to local farmers for improving the efficiency of on-farm irrigation systems. The program could assist farmers by providing them with technical assistance and reimbursing them for a percentage of the cost of equipment required for irrigation system retrofits that improve irrigation efficiency. Examples of new equipment include, but not limited to, the following: drip/micro irrigation, soil moisture sensors, tensiometers, etc.

7.3.8.3 Order/Delivery Flexibility

The District operates the entire distribution system, including agricultural and urban customer demands, based on instantaneous water demands. The District does not currently require customers to place orders for delivery of water. The District does not currently require lead times for delivery of water. The District currently does not have customer allocations in place. Therefore, the District currently provides flexibility for meeting all customer water demands.

7.3.8.4 Supplier Spill and Tailwater Systems

The District delivers water to all of its customers through a distribution pipeline system that is not prone to the operational spills common to the canal delivery systems that serve many of the State’s agricultural water users. Agriculture customers within the District generally produce minimal spill water and tailwater as the result of efficient irrigation practices. The District does not have any spill water or tailwater systems. Agricultural customers may implement spill water and tailwater capture practices on their private property. Therefore, this measure is not applicable.

7.3.8.5 Customer Pump Test/Evaluation

The District encourages customers with irrigation pumps to contact Southern California Edison which offers free hydraulic pump tests. For information on pumps and SCE’s Pump Test Program, contact SCE, 800-336-2822, or visit the following website on.sce.com/pumptest.

7.3.8.6 Real-Time Crop Irrigation Information

The District added link from the CADWR CIMIS website to the District’s web links page, and notified customers of new web link. District sends information to agriculture customers via direct mail regarding CIMIS data and benefits of ETo based irrigation. Additional irrigation information is made available to farmers upon request.

7.3.8.7 On-Farm Evaluations

The District supports the availability of on-farm irrigation and drainage system evaluations. The District will consider the potential to contract with the Ventura and Cachuma Resource Conservation District’s mobile laboratory for irrigation evaluation. As part of program participation, farmers are provided with free irrigation system audits/evaluations, which include recommendations for implementation of applicable best management practices and water use efficiency improvements. A potential future element of this program could provide financial incentives to farmers who choose to implement the recommendations made as part of the irrigation system audits/evaluation process.
REFERENCES

State of California. California Code of Regulations. "Water Conservation". Division 6, Part 2.55, Sections 10608.00 to 10608.64.

Intergovernmental Panel on Climate Change (IPCC). 2008. Climate Change and Water.

McDonald, Bob. 2016. Personal communication with Bob McDonald, CVWD General Manager, and CVWD staff.

Marks, Robert. 2015. Personal communication with Robert Marks, Pueblo Water Resources.

APPENDICES

A	Definitions for Selected Terminology
B	Urban Water Management Planning Act
C	District Notifications and Resolutions for UWMP
D	DWR UWMP Tables
E	DWR SBX 7-7 Tables
F	Groundwater Management Plan
G	Consumer Confidence Report and Water Quality Data
H	Selected District Resolutions/Ordinances
I	Emergency Response Plan
J	BMP Reports for CUWCC
K	Water Rates and Charges
L	Examples of District's Public Education Materials
M	UWMP Checklist
N	District Water Audit Summary
O	Additional Analyses of Multiple Dry Water-Years Supply and Demand
Appendix A

Definitions of Selected Terminology
APPENDIX A
DEFINITIONS FOR SELECTED TERMINOLOGY

Selected abbreviations were defined in the Table of Contents. Provided below are definitions of selected acronyms and terms used throughout this document.

acre-foot. The amount of water needed to cover an acre one-foot deep (approximately 325,900 gallons). An acre-foot can support the annual indoor and outdoor needs of between one and two households per year, and, on average, 3 acre-feet are needed to irrigate 1 acre of farmland; enough to cover a football field 1 foot deep.

appropriation. The right to withdraw water from its source.

aquifer. A geologic formation of sand, rock and gravel through which water can pass and which can store, transmit and yield significant quantities of water to wells and springs.

audit (end-use). A systematic accounting of water uses by end users (residential, commercial, industrial, or agricultural), often used to identify potential areas for water reduction, conservation, or efficiency improvement.

audit (system). A systematic accounting of water throughout the production, transmission, and distribution facilities of the system.

available supply. The maximum amount of reliable water supply, including surface water, groundwater, and purchases under secure contracts.

average-day demand. A water system's average daily use based on total annual water production (total annual gallons or cubic feet divided by 365); multiple years can be used to account for yearly variations.

avoided cost. The savings associated with undertaking a given activity (such as demand management) instead of an alternative means of achieving the same results (such as adding supply); can be used to establish the least-cost means of achieving a specified goal. Can be measured in terms of incremental cost.

baseline. An established value or trend used for comparison when conditions are altered, as in the introduction of water conservation measures. The average per capita water use for the following baseline periods and calculated in accordance with Methodologies for Calculating Baseline and Compliance Urban Per Capita Water Use, DWR 2011: (1) A 10 to 15-year continuous period used to calculate baseline daily per capita water use per CWC Section 10608.20; (2) A continuous 5-year period used to determine whether the 2020 urban water use target meets the legislation’s minimum water use reduction requirement per CWC Section 10608.22.

beneficial use. A use of water resources that benefits people or nature. State law may define beneficial use.

benefit-cost analysis. A comparison of total benefits to total costs, usually expressed in monetary terms, used to measure efficiency and evaluate alternatives. See also cost-effectiveness and avoided-cost.

best management practices. A measure or activity that is beneficial, empirically proven, cost-effective, and widely accepted in the professional community. The BMPs were historically identical to the Demand Management Practices (DMMs) found in the Water Code, but revisions to both the BMPs and the DMMs have now made them different sets of practices.

block. A quantity of water for which a price per unit of water (or billing rate) is established.
budget (water-use). An accounting of total water use or projected water use for a given location or activity.

capital facilities. Physical facilities used in the production, transmission, and distribution of water.

CII. The combination of commercial, institutional, and industrial water use sectors.

CIMIS. A network of automated weather stations that provide real time weather data to estimate reference evapotranspiration (ETo). The stations are owned and operated cooperatively between the California Department of Water Resources and local agencies.

commodity charge. See variable charge.

compliance daily per capita water use/compliance gpcd. The gross water use during the final year of the reporting period, reported in gallons per capita per day. 2015 and 2020 are both compliance years. This term is used in the context of SB X7-7, The Water Conservation Act of 2009.

conservation (water). Any beneficial reduction in water losses, waste, or use.

conservation pricing. Water rate structures that help achieve beneficial reductions in water usage. See nonpromotional rates.

consumptive use. Use that permanently withdraws water from its source.

cost-effectiveness. A comparison of costs required for achieving the same benefit by different means. Costs are usually expressed in dollars, but benefits can be expressed in another unit (such as a quantity of water). See net benefits.

CUWCC. Council. A membership organization dedicated to urban water conservation throughout California by supporting and integrating innovative technologies and practices; encouraging effective public policies; advancing research, training, and public education; and building on collaborative approaches and partnerships.

customer class. A group of customers (residential, commercial, industrial, wholesale, agricultural, and so on) defined by similar costs of service or patterns of water usage.

decreasing-block (or declining-block) rate. A pricing structure for which the dollar amount charged per unit of water (such as dollars per gallon) decreases with the amount water usage.

demand forecast. A projection of future demand that can be made on a systemwide or customer-class basis.

demand management measures. Measures, practices, or incentives deployed by water utilities to permanently reduce the level or change the pattern of demand for a utility service.

demographic. Having to do with population or socioeconomic conditions.

disadvantaged community. A community with an annual median household income that is less than 80 percent of the statewide annual median household income.

discount rate. A percentage that is used to adjust a forecast of expenditures to account for the time value of money or opportunity costs; it can be based on the utility's cost of capital.

distribution facilities. Pipes, treatment, storage and other facilities used to distribute drinking water to end-users. Transmission canals and pipelines not used for delivering water directly to retail customers should not be included as part of the distribution system.

drought. A sustained period of inadequate or subnormal precipitation that can lead to water supply shortages, as well as increased water usage.
efficient water management practices. See also “demand management measures” but required for AWMP. See also “best management practices”.

end use. Fixtures, appliances, and activities that use water.

demands. Residential, commercial, industrial, governmental, or institutional water consumer.

escalation rate. A percentage that is used to adjust a forecast of expenditures to account for the increasing value of a good or service over time (apart from the discount rate and inflationary effects).

evapotranspiration. Water losses from the surface of soils and plants.

exchanges. Water exchanges are typically water deliveries by one water user to another water user, with the receiving water user returning the water at a specified time, or when the conditions of the parties’ agreement are met. Water exchanges can be strictly a return of water on a basis agreed upon by the participants or can include payment and the return of water. For purposes of UWMP reporting, this is considered a “Wholesale Use,” even if the agency is not considered a wholesale water agency as per the definition in CWC 10608.12 (p) and (r). Agencies will make their own determination as to whether water sent to another agency is a sale, transfer, or exchange.

fixed charge. The portion of a water bill that does not vary with water usage.

fixed costs. Costs associated with water services that do not vary with the amount of water produced or sold.

gpcd. The unit of measure used for reporting baseline and target per capita water consumption. This term is used in the context of SB X7-7, The Water Conservation Act of 2009.

graywater. Reuse, generally without treatment, of domestic type wastewater for toilet flushing, garden irrigation and other nonpotable uses. Excludes water from toilets, kitchen sinks, dishwashers, or water used for washing diapers.

gross water use. The volume of water entering a supplier’s distribution system over a 12-month period. This volume may be adjusted based on changes in system storage, sales to other agencies, recycled water use, agricultural water use, and industrial process water use. This term is used in the context of SB X7-7, The Water Conservation Act of 2009.

groundwater. Water that occurs beneath the land surface and fills partially or wholly pore spaces of the alluvium, soil or rock formation in which it is situated. Does not include water produced with oil in the production of oil and gas or in a bona fide mining operation.

groundwater basin. A groundwater reservoir defined by all the overlying land surface and the underlying aquifers that contain water stored in the reservoir. Boundaries of successively deeper aquifers may differ and make it difficult to define the limits of the basin.

groundwater overdraft. The condition of a groundwater basin in which the amount of water withdrawn by pumping exceeds the amount of water that recharges the basin over a period of years during which water supply conditions approximate average.

groundwater recharge. The action of increasing groundwater storage by natural conditions or by human activity.

groundwater table. The upper surface of the zone of saturation (all pores of subsoil filled with water), except where the surface is formed by an impermeable body.

hydrologic region. A geographical division of the state based on the local hydrologic basins. The California Department of Water Resources divides California into 10 hydrologic regions that correspond to the state’s major water drainage basins.
imported water. Water that has originated from one hydrologic region and is transferred to another hydrologic region.

increasing-block (or inclining-block) rate. A pricing structure for which the dollar amount charged per unit of water (such as dollars per gallon) increases with the amount water usage.

incremental cost. The additional cost associated with adding an increment of capacity.

instream flow. River and stream waters that maintain stream quality, aquatic life, and recreational opportunities.

integrated resource planning. An open and participatory planning process emphasizing least-cost principles and a balanced consideration of supply and demand management options for meeting water needs.

interim urban water use target. The 2015 urban water use target that is the midpoint between the supplier's 10 to 15-year baseline GPCD and their 2020 target GPCD. 2015 UWMPs will compare the interim water use target to the actual water use of 2015. This term is used in the context of SB X7-7, The Water Conservation Act of 2009.

irrigation scheduling. An automated method for optimizing outdoor water use by matching the watering schedule to plant needs.

large-volume user. A water customer, usually industrial or wholesale, whose usage is substantial relative to other users; large-volume users may present unique peaking or other demand characteristics.

leak detection. Methods for identifying water leakage in pipes and fittings.

life span. The expected useful life of a supply-side or demand-side project, measure, or practice. (The life span may not be identical to useful life for tax purposes.)

load management. Methods for managing levels and patterns of usage in order to optimize system resources and facilities.

losses (water). Metered source water less revenue-producing water and authorized unmetered water uses.

low water-use landscaping. Use of plant materials that are appropriate to an area's climate and growing conditions (usually native and adaptive plants). See also xeriscape.

lower income. Persons and families whose income does not exceed the qualifying limits for lower income families as established and amended from time to time pursuant to Section 8 of the United States Housing Act of 1937. In the event the federal standards are discontinued, the department shall, by regulation, establish income limits for lower income households for all geographic areas of the state at 80 percent of area median income, adjusted for family size and revised annually.

market penetration. The extent to which an activity or measure is actually implemented compared to all potential uses or markets.

marginal-cost pricing. A method of rate design where prices reflect the costs associated with producing the next increment of supply.

master metering. A large meter at a point of distribution to multiple uses or users that could be further submetered. Includes metered wholesale sales.

maximum-day demand. Total production for the water system on its highest day of production during a year.

meter. An instrument for measuring and recording water volume.

mixed-use meter. A meter measuring water use for more than one type of end use (such as indoor and outdoor use).
net benefits. The numerical difference between total benefits and total costs, both of which must be expressed in the same unit (usually dollars). See cost-effectiveness.

net present value. The present value of benefits less the present value of costs.

NOAA. A federal agency focused on the condition of the oceans and atmosphere. NOAA provides weather data that may be useful to urban water suppliers when describing the climate of their service area.

nominal dollars. Forecast dollars that are not adjusted for inflation.

nonaccount water. Metered source water less metered water sales.

nonconsumptive use. Water withdrawn and returned to the source.

nonpromotional rates. Rates that do not encourage additional consumption by water users.

nonresidential customer. A commercial, industrial, or agricultural utility customer.

normalization. Adjustment of a variable to a "normal" level based on averaging over an accepted period of time; used in forecasting.

opportunity cost. The value of a foregone opportunity that cannot be pursued because resources are taken up by a chosen activity.

peak demand. The highest point of total water usage experienced by a system, measured on an hourly and on a daily basis.

per-capita use. Total use divided by the total population served.

per-capita residential use. Residential use divided by the total population served.

Potable Water. Water intended for human consumption, delivered through a Public Water System, and regulated by a State or local health agency.

precipitation rate (sprinkling). The surface application rate for landscape watering, usually expressed in inches per hour.

present value. Future expenditures expressed in current dollars by adjusting for a discount rate that accounts for financing costs.

pressure regulator. A post-meter device used to limit water pressure.

price elasticity of demand. A measure of the responsiveness of water usage to changes in price; measured by the percentage change in usage divided by the percentage change in price.

primary treatment. Removing solids and floating matter from wastewater using screening, skimming and sedimentation (settling by gravity).

public water systems. A system for the provision of water for human consumption through pipes or other constructed conveyances that has 15 or more service connections or regularly serves at least 25 individuals daily at least 60 days out of the year. Public water systems are regulated by the State Water Resources Control Board, Drinking Water Program.

rationing. Mandatory water-use restrictions sometimes used under drought or other emergency conditions.

raw water. Water that is untreated and used in its natural state. This may also be called “Source Water.” Some urban water agencies supply raw water to customers for non-potable uses.

real dollars. Forecast dollars that are adjusted for inflation.

recycled water. Municipal wastewater that has been treated to a specified quality, enabling it to be reused for a beneficial purpose.
retail water use/demand. The sale of water directly to customers for end use. These include, single family, multi-family, landscape, or CII. The following sectors may be reported as either a wholesale or retail demand, the determination is made by the supplier: Groundwater recharge, saline intrusion barrier, agricultural, wetlands or wildlife habitat.

rGPCD. Residential Gallons per Capita per Day. This is used in drought reporting to SWRCB for purposes of complying with the Governor’s drought declarations and executive orders in 2014 and 2015 and is solely the estimated residential water use in a service area divided by population. This differs from the GPCD used in UWMPs, which is the total water use within a service area divided by the population.

retrofit. Replacement of parts in an existing plumbing fixture or water-using appliance in order to improve its operational efficiency.

revenue-producing water. Water metered and sold.

reuse (water). Beneficial use of treated wastewater. See also recycled water.

Safe Drinking Water Act. Federal drinking water quality legislation administered by the USEPA through state primacy agencies.

safe yield. The maximum reliable amount that can be withdrawn from a source without compromising quality or quantity, as defined by hydrological studies; can be based on acceptable withdrawals during a critical supply period or drought with a specific probability of occurrence.

SB X7-7. The Water Conservation Act of 2009 that provides for a 20% statewide reduction of urban per capita water use by the year 2020. The Act includes requirements for determining baselines and targets, among other things.

SB X7-7 Verification Form. A set of tables that present the calculations used by a retail supplier or Regional Alliance for developing baselines and targets. These tables are required for retail suppliers and Regional Alliances.

seasonal rate. A pricing structure for which the dollar amount charged per unit of water (such as dollars per gallon) varies by season of use; higher rates usually are charged in the season of peak demand.

secondary treatment. The biological portion of wastewater treatment which uses the activated sludge process to further clean wastewater after primary treatment. Generally, a level of treatment that produces 85 percent removal efficiencies for biological oxygen demand and suspended solids. Usually carried out through the use of trickling filters or by the activated sludge process.

sectors. Classifications of water use that are clearly distinct from other water uses.

sensitivity analysis. An analysis of alternative results based on variations in assumptions; a "what if" analysis.

service territory. The geographic area served by a water utility.

SGMA. Sustainable Groundwater Management Act of 2014. Three California legislative bills that provide a framework for long-term sustainable groundwater management. Local and regional authorities will form Groundwater Sustainability Agencies (GSAs) that oversee the preparation and implementation of a local Groundwater Sustainability Plan. More information can be found at http://water.ca.gov/groundwater/sgm/index.cfm

source-of-supply. Facilities used to extract and/or store raw water prior to transmission and distribution.

source meter. A meter used to record water withdrawn from a surface water or groundwater source, or purchased from a wholesale supplier.

supply management. Measures deployed by the utility that improve the efficiency of production, transmission, and distribution facilities.
submetering. Metering for units comprising a larger service connection, such as apartments in a multifamily building.

surcharge. A special charge on a water bill used to send customers a specific pricing signal and recover costs associated with a particular activity.

surface water augmentation. The planned placement of recycled water into a surface water reservoir that is used as a source of domestic drinking water supply.

SWRCB. A state agency whose mission is to preserve, enhance, and restore the quality of California’s water resources and drinking water for the protection of the environment, public health, and all beneficial uses, and to ensure proper water resource allocation and efficient use, for the benefit of present and future generations. Some key programs that are managed by SWRCB that pertain to UWMPs include: Emergency Drought Regulations, Drinking Water Program, Wastewater, and Water Recycling.

system (water). A series of interconnected conveyance facilities owned and operated by a drinking water supplier; some utilities operate multiple water systems.

tables. DWR has specified the use of standardized tables for reporting UWMP data. Use of these tables is required in the 2015 UWMP, to the extent that the information is available. However, water agencies may include the standardized tables in an appendix and present adapted versions of the standardized tables in the body of the Plan, if that is better adapted to the agency’s records and/or better reflects the information available to the agency.

target method. The water supplier selects one of four different target methods when determining their 2020 Urban Water Use Target. See the Methodologies document (DWR 2011) and Appendix E, SB X7-7 Verification Form for details. This term is used in the context of SB X7-7, The Water Conservation Act of 2009.

take-or-pay. A contract provision obligating a purchaser to pay for a commodity whether or not delivery is taken.

tariff. The schedule of a utility's rates and charges.

tertiary treatment. The treatment of waste water beyond the secondary or biological stage. Normally implies the removal of nutrients, such as phosphorous and nitrogen, and a high percentage of suspended solids.

transfers. The CWC defines a water transfer as a temporary or long-term change in the point of diversion, place of use, or purpose of use due to a transfer, sale, lease, or exchange of water or water rights. A water transfer can be a temporary or permanent sale of water or a water right by the water right holder, a lease of the right to use water from the water right holder, or a sale or lease of a contractual right to water supply. Water transfers can also take the form of long-term contracts for the purpose of improving long-term supply reliability. For purposes of UWMP reporting, this is considered a “Wholesale Use,” even if the agency is not considered a wholesale water agency as per the definition in CWC 10608.12 (p) and (r). Agencies will make their own determination as to whether water sent to another agency is a sale, transfer, or exchange.

transmission facilities. Pipes used to transport raw or treated water to distribution facilities.

treated water. Water treated to meet drinking water standards.

unaccounted-for water. The amount of nonaccount water less known or estimated losses and leaks.
uniform rate. A pricing structure for which the dollar amount charged per unit of water (such as dollars per gallon) does not vary with the amount of water usage.

universal metering. Metering of all water-service connections.

unmetered water. Water delivered but not measured for accounting and billing purposes.

urban retail water supplier. A water supplier, either publicly or privately owned, that directly provides potable municipal water to more than 3,000 end users or that supplies more than 3,000 acre-feet of potable water annually at retail for municipal purposes. The terms “Water Supplier” and “Water Agency” are used interchangeably in this document.

urban wholesale water supplier. A water supplier, either publicly or privately owned, that provides more than 3,000 acre-feet of water annually at wholesale for potable municipal purposes. Water Agency – This term can refer to either an urban retail water supplier or an urban wholesale water supplier. The terms “Water Agency” and “Water Supplier” are used interchangeably in this document.

user class. See customer class.

variable charge. The portion of a water bill that varies with water usage; also known as a commodity charge.

variable cost. Costs associated with water service that vary with the amount of water produced or sold.

water demand/use. Water conveyed through a distribution system that is used by a water agency and its customers for any purpose, including non-potable water uses, water losses, and other non-revenue water. The terms “Water Demand” and “Water Use” will be used interchangeably in this document.

water right. A property right or legal claim to withdraw/divert a specified amount of water in a specified time frame for a beneficial use.

water supplier. This term can refer to either an urban retail water supplier or an urban wholesale water supplier. The terms “Water Agency” and “Water Supplier” are used interchangeably in this document.

water use sector. Classifications of water use that are clearly distinct from other water uses.

wastewater. Water that has been previously used by a municipality, industry, or agriculture and has suffered a loss of quality as a result.

wastewater treatment plant. A municipal or public service district which provides treatment of collected wastewater.

watershed. A regional land area, defined by topography, soil, and drainage characteristics, within which raw waters collect and replenish supplies.

weather-adjusted. Water demand, revenues, or other variables adjusted to a "normal" weather year; also known as weather normalization.

wholesale water wse/demand. Generally large quantities of water not for municipal end uses. Wholesale uses include: sales, transfers, or exchanges to other agencies. The following sectors may be reported as either a wholesale or retail demand, the determination is made by the supplier: Groundwater recharge, saline intrusion barrier, agricultural, wetlands or wildlife habitat.

worksheets. DWR has specified the use of standardized worksheets for reporting AWMP data.

WSCP. Water Shortage Contingency Plan. A strategic plan developed by and for a water supplier to prepare and respond to water shortages. The CWC provides specific requirements for a WSCP.

xeriscape. Landscaping that involves seven principles: proper planning and design; soil analysis and improvement; practical turf areas; appropriate plant selection; efficient irrigation; mulching; and appropriate maintenance.
Appendix B

Urban Water Management Planning Act
Appendix A Urban Water Management Planning Act Final

California Water Code Division 6, Part 2.6.
Chapter 1. General Declaration and Policy §10610-10610.4
Chapter 2. Definitions §10611-10617
Chapter 3. Urban Water Management Plans
 Article 1. General Provisions §10620-10621
 Article 2. Contents of Plans §10630-10634
 Article 2.5. Water Service Reliability §10635
 Article 3. Adoption And Implementation of Plans §10640-10645
Chapter 4. Miscellaneous Provisions §10650-10656

Chapter 1. General Declaration and Policy

SECTION 10610-10610.4

10610. This part shall be known and may be cited as the "Urban Water Management Planning Act."

10610.2. (a) The Legislature finds and declares all of the following:

 (1) The waters of the state are a limited and renewable resource subject to ever-increasing demands.

 (2) The conservation and efficient use of urban water supplies are of statewide concern; however, the planning for that use and the implementation of those plans can best be accomplished at the local level.

 (3) A long-term, reliable supply of water is essential to protect the productivity of California's businesses and economic climate.

 (4) As part of its long-range planning activities, every urban water supplier should make every effort to ensure the appropriate level of reliability in its water service sufficient to meet the needs of its various categories of customers during normal, dry, and multiple dry water years.

 (5) Public health issues have been raised over a number of contaminants that have been identified in certain local and imported water supplies.

 (6) Implementing effective water management strategies, including groundwater storage projects and recycled water projects, may require specific water quality and salinity targets for meeting groundwater basins water quality objectives and promoting beneficial use of recycled water.

 (7) Water quality regulations are becoming an increasingly important factor in water agencies' selection of raw water sources, treatment alternatives, and modifications to existing treatment facilities.
(8) Changes in drinking water quality standards may also impact the usefulness of water supplies and may ultimately impact supply reliability.

(9) The quality of source supplies can have a significant impact on water management strategies and supply reliability.

(b) This part is intended to provide assistance to water agencies in carrying out their long-term resource planning responsibilities to ensure adequate water supplies to meet existing and future demands for water.

10610.4. The Legislature finds and declares that it is the policy of the state as follows:

(a) The management of urban water demands and efficient use of water shall be actively pursued to protect both the people of the state and their water resources.

(b) The management of urban water demands and efficient use of urban water supplies shall be a guiding criterion in public decisions.

(c) Urban water suppliers shall be required to develop water management plans to actively pursue the efficient use of available supplies.

Chapter 2. Definitions

SECTION 10611-10617

10611. Unless the context otherwise requires, the definitions of this chapter govern the construction of this part.

10611.5. "Demand management" means those water conservation measures, programs, and incentives that prevent the waste of water and promote the reasonable and efficient use and reuse of available supplies.

10612. "Customer" means a purchaser of water from a water supplier who uses the water for municipal purposes, including residential, commercial, governmental, and industrial uses.

10613. "Efficient use" means those management measures that result in the most effective use of water so as to prevent its waste or unreasonable use or unreasonable method of use.

10614. "Person" means any individual, firm, association, organization, partnership, business, trust, corporation, company, public agency, or any agency of such an entity.

10615. "Plan" means an urban water management plan prepared pursuant to this part. A plan shall describe and evaluate sources of supply, reasonable and practical efficient uses,
reclamation and demand management activities. The components of the plan may vary according to an individual community or area’s characteristics and its capabilities to efficiently use and conserve water. The plan shall address measures for residential, commercial, governmental, and industrial water demand management as set forth in Article 2 (commencing with Section 10630) of Chapter 3. In addition, a strategy and time schedule for implementation shall be included in the plan.

10616. "Public agency" means any board, commission, county, city and county, city, regional agency, district, or other public entity.

10616.5. "Recycled water" means the reclamation and reuse of wastewater for beneficial use.

10617. "Urban water supplier" means a supplier, either publicly or privately owned, providing water for municipal purposes either directly or indirectly to more than 3,000 customers or supplying more than 3,000 acre-feet of water annually. An urban water supplier includes a supplier or contractor for water, regardless of the basis of right, which distributes or sells for ultimate resale to customers. This part applies only to water supplied from public water systems subject to Chapter 4 (commencing with Section 116275) of Part 12 of Division 104 of the Health and Safety Code.

Chapter 3. Urban Water Management Plans

SECTION 10620-10621

10620. (a) Every urban water supplier shall prepare and adopt an urban water management plan in the manner set forth in Article 3 (commencing with Section 10640).

(b) Every person that becomes an urban water supplier shall adopt an urban water management plan within one year after it has become an urban water supplier.

(c) An urban water supplier indirectly providing water shall not include planning elements in its water management plan as provided in Article 2 (commencing with Section 10630) that would be applicable to urban water suppliers or public agencies directly providing water, or to their customers, without the consent of those suppliers or public agencies.

(d) (1) An urban water supplier may satisfy the requirements of this part by participation in areawide, regional, watershed, or basinwide urban water management planning where those plans will reduce preparation costs and contribute to the achievement of conservation and efficient water use.

(2) Each urban water supplier shall coordinate the preparation of its plan with other appropriate agencies in the area, including other water suppliers that
share a common source, water management agencies, and relevant public agencies, to the extent practicable.

(e) The urban water supplier may prepare the plan with its own staff, by contract, or in cooperation with other governmental agencies.

(f) An urban water supplier shall describe in the plan water management tools and options used by that entity that will maximize resources and minimize the need to import water from other regions.

10621. (a) Each urban water supplier shall update its plan at least once every five years on or before December 31, in years ending in five and zero, except as provided in subdivision (d).

(b) Every urban water supplier required to prepare a plan pursuant to this part shall, at least 60 days before the public hearing on the plan required by Section 10642, notify any city or county within which the supplier provides water supplies that the urban water supplier will be reviewing the plan and considering amendments or changes to the plan. The urban water supplier may consult with, and obtain comments from, any city or county that receives notice pursuant to this subdivision.

(c) The amendments to, or changes in, the plan shall be adopted and filed in the manner set forth in Article 3 (commencing with Section 10640).

(d) Each urban water supplier shall update and submit its 2015 plan to the department by July 1, 2016.

Article 2. Contents of Plan

SECTION 10630-10634

10630. It is the intention of the Legislature, in enacting this part, to permit levels of water management planning commensurate with the numbers of customers served and the volume of water supplied.

10631. A plan shall be adopted in accordance with this chapter that shall do all of the following:

(a) Describe the service area of the supplier, including current and projected population, climate, and other demographic factors affecting the supplier's water management planning. The projected population estimates shall be based upon data from the state, regional, or local service agency population projections within the service area of the urban water supplier and shall be in five-year increments to 20 years or as far as data is available.

(b) Identify and quantify, to the extent practicable, the existing and planned sources of water available to the supplier over the same five-year increments described in subdivision (a). If groundwater is identified as an existing or planned source of
water available to the supplier, all of the following information shall be included in the plan:

(1) A copy of any groundwater management plan adopted by the urban water supplier, including plans adopted pursuant to Part 2.75 (commencing with Section 10750), or any other specific authorization for groundwater management.

(2) A description of any groundwater basin or basins from which the urban water supplier pumps groundwater. For basins that a court or the board has adjudicated the rights to pump groundwater, a copy of the order or decree adopted by the court or the board and a description of the amount of groundwater the urban water supplier has the legal right to pump under the order or decree. For basins that have not been adjudicated, information as to whether the department has identified the basin or basins as overdrafted or has projected that the basin will become overdrafted if present management conditions continue, in the most current official departmental bulletin that characterizes the condition of the groundwater basin, and a detailed description of the efforts being undertaken by the urban water supplier to eliminate the long-term overdraft condition.

(3) A detailed description and analysis of the location, amount, and sufficiency of groundwater pumped by the urban water supplier for the past five years. The description and analysis shall be based on information that is reasonably available, including, but not limited to, historic use records.

(4) A detailed description and analysis of the amount and location of groundwater that is projected to be pumped by the urban water supplier. The description and analysis shall be based on information that is reasonably available, including, but not limited to, historic use records.

(c) (1) Describe the reliability of the water supply and vulnerability to seasonal or climatic shortage, to the extent practicable, and provide data for each of the following:

(A) An average water year.

(B) A single-dry water year.

(C) Multiple-dry water years.

(2) For any water source that may not be available at a consistent level of use, given specific legal, environmental, water quality, or climatic factors, describe plans to supplement or replace that source with alternative sources or water demand management measures, to the extent practicable.
(d) Describe the opportunities for exchanges or transfers of water on a short-term or long-term basis.

(e) (1) Quantify, to the extent records are available, past and current water use, over the same five-year increments described in subdivision (a), and projected water use, identifying the uses among water use sectors, including, but not necessarily limited to, all of the following uses:

(A) Single-family residential.

(B) Multifamily.

(C) Commercial.

(D) Industrial.

(E) Institutional and governmental.

(F) Landscape.

(G) Sales to other agencies.

(H) Saline water intrusion barriers, groundwater recharge, or conjunctive use, or any combination thereof.

(I) Agricultural.

(J) Distribution system water loss.

(2) The water use projections shall be in the same five-year increments described in subdivision (a).

(3) (A) For the 2015 urban water management plan update, the distribution system water loss shall be quantified for the most recent 12-month period available. For all subsequent updates, the distribution system water loss shall be quantified for each of the five years preceding the plan update.

(B) The distribution system water loss quantification shall be reported in accordance with a worksheet approved or developed by the department through a public process. The water loss quantification worksheet shall be based on the water system balance methodology developed by the American Water Works Association.

(4) (A) If available and applicable to an urban water supplier, water use projections may display and account for the water savings estimated to result from adopted codes, standards, ordinances, or transportation and land use plans identified by the urban water supplier, as applicable to the service area.
(B) To the extent that an urban water supplier reports the information described in subparagraph (A), an urban water supplier shall do both of the following:

(i) Provide citations of the various codes, standards, ordinances, or transportation and land use plans utilized in making the projections.

(ii) Indicate the extent that the water use projections consider savings from codes, standards, ordinances, or transportation and land use plans. Water use projections that do not account for these water savings shall be noted of that fact.

(f) Provide a description of the supplier's water demand management measures. This description shall include all of the following:

(1) (A) For an urban retail water supplier, as defined in Section 10608.12, a narrative description that addresses the nature and extent of each water demand management measure implemented over the past five years. The narrative shall describe the water demand management measures that the supplier plans to implement to achieve its water use targets pursuant to Section 10608.20.

(B) The narrative pursuant to this paragraph shall include descriptions of the following water demand management measures:

(i) Water waste prevention ordinances.

(ii) Metering.

(iii) Conservation pricing.

(iv) Public education and outreach.

(v) Programs to assess and manage distribution system real loss.

(vi) Water conservation program coordination and staffing support.

(vii) Other demand management measures that have a significant impact on water use as measured in gallons per capita per day, including innovative measures, if implemented.

(2) For an urban wholesale water supplier, as defined in Section 10608.12, a narrative description of the items in clauses (ii), (iv), (vi), and (vii) of subparagraph (B) of paragraph (1), and a narrative description of its distribution system asset management and wholesale supplier assistance programs.

(g) Include a description of all water supply projects and water supply programs that may be undertaken by the urban water supplier to meet the total projected water
use, as established pursuant to subdivision (a) of Section 10635. The urban water supplier shall include a detailed description of expected future projects and programs that the urban water supplier may implement to increase the amount of the water supply available to the urban water supplier in average, single-dry, and multiple-dry water years. The description shall identify specific projects and include a description of the increase in water supply that is expected to be available from each project. The description shall include an estimate with regard to the implementation timeline for each project or program.

(h) Describe the opportunities for development of desalinated water, including, but not limited to, ocean water, brackish water, and groundwater, as a long-term supply.

(i) For purposes of this part, urban water suppliers that are members of the California Urban Water Conservation Council shall be deemed in compliance with the requirements of subdivision (f) by complying with all the provisions of the "Memorandum of Understanding Regarding Urban Water Conservation in California," dated December 10, 2008, as it may be amended, and by submitting the annual reports required by Section 6.2 of that memorandum.

(j) An urban water supplier that relies upon a wholesale agency for a source of water shall provide the wholesale agency with water use projections from that agency for that source of water in five-year increments to 20 years or as far as data is available. The wholesale agency shall provide information to the urban water supplier for inclusion in the urban water supplier’s plan that identifies and quantifies, to the extent practicable, the existing and planned sources of water as required by subdivision (b), available from the wholesale agency to the urban water supplier over the same five-year increments, and during various water-year types in accordance with subdivision (c). An urban water supplier may rely upon water supply information provided by the wholesale agency in fulfilling the plan informational requirements of subdivisions (b) and (c).

10631.1. (a) The water use projections required by Section 10631 shall include projected water use for single-family and multifamily residential housing needed for lower income households, as defined in Section 50079.5 of the Health and Safety Code, as identified in the housing element of any city, county, or city and county in the service area of the supplier.

(b) It is the intent of the Legislature that the identification of projected water use for single-family and multifamily residential housing for lower income households will assist a supplier in complying with the requirement under Section 65589.7 of the Government Code to grant a priority for the provision of service to housing units affordable to lower income households.
10631.2. (a) In addition to the requirements of Section 10631, an urban water management plan may, but is not required to, include any of the following information:

(1) An estimate of the amount of energy used to extract or divert water supplies.

(2) An estimate of the amount of energy used to convey water supplies to the water treatment plants or distribution systems.

(3) An estimate of the amount of energy used to treat water supplies.

(4) An estimate of the amount of energy used to distribute water supplies through its distribution systems.

(5) An estimate of the amount of energy used for treated water supplies in comparison to the amount used for nontreated water supplies.

(6) An estimate of the amount of energy used to place water into or withdraw from storage.

(7) Any other energy-related information the urban water supplier deems appropriate.

(b) The department shall include in its guidance for the preparation of urban water management plans a methodology for the voluntary calculation or estimation of the energy intensity of urban water systems. The department may consider studies and calculations conducted by the Public Utilities Commission in developing the methodology.

10631.5. (a) (1) Beginning January 1, 2009, the terms of, and eligibility for, a water management grant or loan made to an urban water supplier and awarded or administered by the department, state board, or California Bay-Delta Authority or its successor agency shall be conditioned on the implementation of the water demand management measures described in Section 10631, as determined by the department pursuant to subdivision (b).

(2) For the purposes of this section, water management grants and loans include funding for programs and projects for surface water or groundwater storage, recycling, desalination, water conservation, water supply reliability, and water supply augmentation. This section does not apply to water management projects funded by the federal American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

(3) Notwithstanding paragraph (1), the department shall determine that an urban water supplier is eligible for a water management grant or loan even though the supplier is not implementing all of the water demand management measures described in Section 10631, if the urban water supplier has...
submitted to the department for approval a schedule, financing plan, and budget, to be included in the grant or loan agreement, for implementation of the water demand management measures. The supplier may request grant or loan funds to implement the water demand management measures to the extent the request is consistent with the eligibility requirements applicable to the water management funds.

(4) (A) Notwithstanding paragraph (1), the department shall determine that an urban water supplier is eligible for a water management grant or loan even though the supplier is not implementing all of the water demand management measures described in Section 10631, if an urban water supplier submits to the department for approval documentation demonstrating that a water demand management measure is not locally cost effective. If the department determines that the documentation submitted by the urban water supplier fails to demonstrate that a water demand management measure is not locally cost effective, the department shall notify the urban water supplier and the agency administering the grant or loan program within 120 days that the documentation does not satisfy the requirements for an exemption, and include in that notification a detailed statement to support the determination.

(B) For purposes of this paragraph, "not locally cost effective" means that the present value of the local benefits of implementing a water demand management measure is less than the present value of the local costs of implementing that measure.

(b) (1) The department, in consultation with the state board and the California Bay-Delta Authority or its successor agency, and after soliciting public comment regarding eligibility requirements, shall develop eligibility requirements to implement the requirement of paragraph (1) of subdivision (a). In establishing these eligibility requirements, the department shall do both of the following:

(A) Consider the conservation measures described in the Memorandum of Understanding Regarding Urban Water Conservation in California, and alternative conservation approaches that provide equal or greater water savings.

(B) Recognize the different legal, technical, fiscal, and practical roles and responsibilities of wholesale water suppliers and retail water suppliers.

(2) (A) For the purposes of this section, the department shall determine whether an urban water supplier is implementing all of the water demand management measures described in Section 10631 based on either, or a combination, of the following:
(i) Compliance on an individual basis.

(ii) Compliance on a regional basis. Regional compliance shall require participation in a regional conservation program consisting of two or more urban water suppliers that achieves the level of conservation or water efficiency savings equivalent to the amount of conservation or savings achieved if each of the participating urban water suppliers implemented the water demand management measures. The urban water supplier administering the regional program shall provide participating urban water suppliers and the department with data to demonstrate that the regional program is consistent with this clause. The department shall review the data to determine whether the urban water suppliers in the regional program are meeting the eligibility requirements.

(B) The department may require additional information for any determination pursuant to this section.

(3) The department shall not deny eligibility to an urban water supplier in compliance with the requirements of this section that is participating in a multiagency water project, or an integrated regional water management plan, developed pursuant to Section 75026 of the Public Resources Code, solely on the basis that one or more of the agencies participating in the project or plan is not implementing all of the water demand management measures described in Section 10631.

(c) In establishing guidelines pursuant to the specific funding authorization for any water management grant or loan program subject to this section, the agency administering the grant or loan program shall include in the guidelines the eligibility requirements developed by the department pursuant to subdivision (b).

(d) Upon receipt of a water management grant or loan application by an agency administering a grant and loan program subject to this section, the agency shall request an eligibility determination from the department with respect to the requirements of this section. The department shall respond to the request within 60 days of the request.

(e) The urban water supplier may submit to the department copies of its annual reports and other relevant documents to assist the department in determining whether the urban water supplier is implementing or scheduling the implementation of water demand management activities. In addition, for urban water suppliers that are signatories to the Memorandum of Understanding Regarding Urban Water Conservation in California and submit biennial reports to the California Urban Water Conservation Council in accordance with the memorandum, the department may use these reports to assist in tracking the implementation of water demand management measures.
(f) This section shall remain in effect only until July 1, 2016, and as of that date is repealed, unless a later enacted statute, that is enacted before July 1, 2016, deletes or extends that date.

10631.7. The department, in consultation with the California Urban Water Conservation Council, shall convene an independent technical panel to provide information and recommendations to the department and the Legislature on new demand management measures, technologies, and approaches. The panel shall consist of no more than seven members, who shall be selected by the department to reflect a balanced representation of experts. The panel shall have at least one, but no more than two, representatives from each of the following: retail water suppliers, environmental organizations, the business community, wholesale water suppliers, and academia. The panel shall be convened by January 1, 2009, and shall report to the Legislature no later than January 1, 2010, and every five years thereafter. The department shall review the panel report and include in the final report to the Legislature the department’s recommendations and comments regarding the panel process and the panel’s recommendations.

10632. (a) The plan shall provide an urban water shortage contingency analysis that includes each of the following elements that are within the authority of the urban water supplier:

(1) Stages of action to be undertaken by the urban water supplier in response to water supply shortages, including up to a 50 percent reduction in water supply, and an outline of specific water supply conditions that are applicable to each stage.

(2) An estimate of the minimum water supply available during each of the next three water years based on the driest three-year historic sequence for the agency’s water supply.

(3) Actions to be undertaken by the urban water supplier to prepare for, and implement during, a catastrophic interruption of water supplies including, but not limited to, a regional power outage, an earthquake, or other disaster.

(4) Additional, mandatory prohibitions against specific water use practices during water shortages, including, but not limited to, prohibiting the use of potable water for street cleaning.

(5) Consumption reduction methods in the most restrictive stages. Each urban water supplier may use any type of consumption reduction methods in its water shortage contingency analysis that would reduce water use, are
appropriate for its area, and have the ability to achieve a water use reduction consistent with up to a 50 percent reduction in water supply.

(6) Penalties or charges for excessive use, where applicable.

(7) An analysis of the impacts of each of the actions and conditions described in paragraphs (1) to (6), inclusive, on the revenues and expenditures of the urban water supplier, and proposed measures to overcome those impacts, such as the development of reserves and rate adjustments.

(8) A draft water shortage contingency resolution or ordinance.

(9) A mechanism for determining actual reductions in water use pursuant to the urban water shortage contingency analysis.

(b) Commencing with the urban water management plan update due July 1, 2016, for purposes of developing the water shortage contingency analysis pursuant to subdivision (a), the urban water supplier shall analyze and define water features that are artificially supplied with water, including ponds, lakes, waterfalls, and fountains, separately from swimming pools and spas, as defined in subdivision (a) of Section 115921 of the Health and Safety Code.

10633. The plan shall provide, to the extent available, information on recycled water and its potential for use as a water source in the service area of the urban water supplier. The preparation of the plan shall be coordinated with local water, wastewater, groundwater, and planning agencies that operate within the supplier's service area, and shall include all of the following:

(a) A description of the wastewater collection and treatment systems in the supplier's service area, including a quantification of the amount of wastewater collected and treated and the methods of wastewater disposal.

(b) A description of the quantity of treated wastewater that meets recycled water standards, is being discharged, and is otherwise available for use in a recycled water project.

(c) A description of the recycled water currently being used in the supplier's service area, including, but not limited to, the type, place, and quantity of use.

(d) A description and quantification of the potential uses of recycled water, including, but not limited to, agricultural irrigation, landscape irrigation, wildlife habitat enhancement, wetlands, industrial reuse, groundwater recharge, indirect potable reuse, and other appropriate uses, and a determination with regard to the technical and economic feasibility of serving those uses.
(e) The projected use of recycled water within the supplier's service area at the end of 5, 10, 15, and 20 years, and a description of the actual use of recycled water in comparison to uses previously projected pursuant to this subdivision.

(f) A description of actions, including financial incentives, which may be taken to encourage the use of recycled water, and the projected results of these actions in terms of acre-feet of recycled water used per year.

(g) A plan for optimizing the use of recycled water in the supplier's service area, including actions to facilitate the installation of dual distribution systems, to promote recirculating uses, to facilitate the increased use of treated wastewater that meets recycled water standards, and to overcome any obstacles to achieving that increased use.

10634. The plan shall include information, to the extent practicable, relating to the quality of existing sources of water available to the supplier over the same five-year increments as described in subdivision (a) of Section 10631, and the manner in which water quality affects water management strategies and supply reliability.

Article 2.5. Water Service Reliability

SECTION 10635

10635. (a) Every urban water supplier shall include, as part of its urban water management plan, an assessment of the reliability of its water service to its customers during normal, dry, and multiple dry water years. This water supply and demand assessment shall compare the total water supply sources available to the water supplier with the total projected water use over the next 20 years, in five-year increments, for a normal water year, a single dry water year, and multiple dry water years. The water service reliability assessment shall be based upon the information compiled pursuant to Section 10631, including available data from state, regional, or local agency population projections within the service area of the urban water supplier.

(b) The urban water supplier shall provide that portion of its urban water management plan prepared pursuant to this article to any city or county within which it provides water supplies no later than 60 days after the submission of its urban water management plan.

(c) Nothing in this article is intended to create a right or entitlement to water service or any specific level of water service.
(d) Nothing in this article is intended to change existing law concerning an urban water supplier's obligation to provide water service to its existing customers or to any potential future customers.

Article 3. Adoption and Implementation of Plans

SECTION 10640-10645

10640. Every urban water supplier required to prepare a plan pursuant to this part shall prepare its plan pursuant to Article 2 (commencing with Section 10630). The supplier shall likewise periodically review the plan as required by Section 10621, and any amendments or changes required as a result of that review shall be adopted pursuant to this article.

10641. An urban water supplier required to prepare a plan may consult with, and obtain comments from, any public agency or state agency or any person who has special expertise with respect to water demand management methods and techniques.

10642. Each urban water supplier shall encourage the active involvement of diverse social, cultural, and economic elements of the population within the service area prior to and during the preparation of the plan. Prior to adopting a plan, the urban water supplier shall make the plan available for public inspection and shall hold a public hearing thereon. Prior to the hearing, notice of the time and place of hearing shall be published within the jurisdiction of the publicly owned water supplier pursuant to Section 6066 of the Government Code. The urban water supplier shall provide notice of the time and place of hearing to any city or county within which the supplier provides water supplies. A privately owned water supplier shall provide an equivalent notice within its service area.

After the hearing, the plan shall be adopted as prepared or as modified after the hearing.

10643. An urban water supplier shall implement its plan adopted pursuant to this chapter in accordance with the schedule set forth in its plan.

10644. (a) (1) An urban water supplier shall submit to the department, the California State Library, and any city or county within which the supplier provides water supplies a copy of its plan no later than 30 days after adoption. Copies of amendments or changes to the plans shall be submitted to the department, the California State Library, and any city or county within which the supplier provides water supplies within 30 days after adoption.

(2) The plan, or amendments to the plan, submitted to the department pursuant to paragraph (1) shall be submitted electronically and shall include any standardized forms, tables, or displays specified by the department.
(b) (1) Notwithstanding Section 10231.5 of the Government Code, the department shall prepare and submit to the Legislature, on or before December 31, in the years ending in six and one, a report summarizing the status of the plans adopted pursuant to this part.

The report prepared by the department shall identify the exemplary elements of the individual plans. The department shall provide a copy of the report to each urban water supplier that has submitted its plan to the department. The department shall also prepare reports and provide data for any legislative hearings designed to consider the effectiveness of plans submitted pursuant to this part.

(2) A report to be submitted pursuant to paragraph (1) shall be submitted in compliance with Section 9795 of the Government Code.

(c) (1) For the purpose of identifying the exemplary elements of the individual plans, the department shall identify in the report water demand management measures adopted and implemented by specific urban water suppliers, and identified pursuant to Section 10631, that achieve water savings significantly above the levels established by the department to meet the requirements of Section 10631.5.

(2) The department shall distribute to the panel convened pursuant to Section 10631.7 the results achieved by the implementation of those water demand management measures described in paragraph (1).

(3) The department shall make available to the public the standard the department will use to identify exemplary water demand management measures.

10645. Not later than 30 days after filing a copy of its plan with the department, the urban water supplier and the department shall make the plan available for public review during normal business hours.

Chapter 4. Miscellaneous Provisions

SECTION 10650-10656

10650. Any actions or proceedings to attack, review, set aside, void, or annul the acts or decisions of an urban water supplier on the grounds of noncompliance with this part shall be commenced as follows:

(a) An action or proceeding alleging failure to adopt a plan shall be commenced within 18 months after that adoption is required by this part.
(b) Any action or proceeding alleging that a plan, or action taken pursuant to the plan, does not comply with this part shall be commenced within 90 days after filing of the plan or amendment thereto pursuant to Section 10644 or the taking of that action.

10651. In any action or proceeding to attack, review, set aside, void, or annul a plan, or an action taken pursuant to the plan by an urban water supplier on the grounds of noncompliance with this part, the inquiry shall extend only to whether there was a prejudicial abuse of discretion. Abuse of discretion is established if the supplier has not proceeded in a manner required by law or if the action by the water supplier is not supported by substantial evidence.

10652. The California Environmental Quality Act (Division 13 (commencing with Section 21000) of the Public Resources Code) does not apply to the preparation and adoption of plans pursuant to this part or to the implementation of actions taken pursuant to Section 10632. Nothing in this part shall be interpreted as exempting from the California Environmental Quality Act any project that would significantly affect water supplies for fish and wildlife, or any project for implementation of the plan other than projects implementing Section 10632, or any project for expanded or additional water supplies.

10653. The adoption of a plan shall satisfy any requirements of state law, regulation, or order, including those of the State Water Resources Control Board and the Public Utilities Commission, for the preparation of water management plans or conservation plans; provided, that if the State Water Resources Control Board or the Public Utilities Commission requires additional information concerning water conservation to implement its existing authority, nothing in this part shall be deemed to limit the board or the commission in obtaining that information. The requirements of this part shall be satisfied by any urban water demand management plan prepared to meet federal laws or regulations after the effective date of this part, and which substantially meets the requirements of this part, or by any existing urban water management plan which includes the contents of a plan required under this part.

10654. An urban water supplier may recover in its rates the costs incurred in preparing its plan and implementing the reasonable water conservation measures included in the plan. Any best water management practice that is included in the plan that is identified in the "Memorandum of Understanding Regarding Urban Water Conservation in California" is deemed to be reasonable for the purposes of this section.

10655. If any provision of this part or the application thereof to any person or circumstances is held invalid, that invalidity shall not affect other provisions or applications of this part which can be given effect without the invalid provision or application thereof, and to this end the provisions of this part are severable.

10656. An urban water supplier that does not prepare, adopt, and submit its urban water management plan to the department in accordance with this part, is ineligible to receive funding pursuant to Division 24 (commencing with Section 78500) or Division 26.
Appendix A Urban Water Management Planning Act Final

(commencing with Section 79000), or receive drought assistance from the state until the urban water management plan is submitted pursuant to this article.
Chapter 1. General Declarations and Policy

SECTION 10608-10608.8

10608. The Legislature finds and declares all of the following:

(a) Water is a public resource that the California Constitution protects against waste and unreasonable use.

(b) Growing population, climate change, and the need to protect and grow California's economy while protecting and restoring our fish and wildlife habitats make it essential that the state manage its water resources as efficiently as possible.

(c) Diverse regional water supply portfolios will increase water supply reliability and reduce dependence on the Delta.

(d) Reduced water use through conservation provides significant energy and environmental benefits, and can help protect water quality, improve streamflows, and reduce greenhouse gas emissions.

(e) The success of state and local water conservation programs to increase efficiency of water use is best determined on the basis of measurable outcomes related to water use or efficiency.

(f) Improvements in technology and management practices offer the potential for increasing water efficiency in California over time, providing an essential water management tool to meet the need for water for urban, agricultural, and environmental uses.

(g) The Governor has called for a 20 percent per capita reduction in urban water use statewide by 2020.

(h) The factors used to formulate water use efficiency targets can vary significantly from location to location based on factors including weather, patterns of urban and suburban development, and past efforts to enhance water use efficiency.
Per capita water use is a valid measure of a water provider's efforts to reduce urban water use within its service area. However, per capita water use is less useful for measuring relative water use efficiency between different water providers. Differences in weather, historical patterns of urban and suburban development, and density of housing in a particular location need to be considered when assessing per capita water use as a measure of efficiency.

10608.4. It is the intent of the Legislature, by the enactment of this part, to do all of the following:

(a) Require all water suppliers to increase the efficiency of use of this essential resource.

(b) Establish a framework to meet the state targets for urban water conservation identified in this part and called for by the Governor.

(c) Measure increased efficiency of urban water use on a per capita basis.

(d) Establish a method or methods for urban retail water suppliers to determine targets for achieving increased water use efficiency by the year 2020, in accordance with the Governor's goal of a 20-percent reduction.

(e) Establish consistent water use efficiency planning and implementation standards for urban water suppliers and agricultural water suppliers.

(f) Promote urban water conservation standards that are consistent with the California Urban Water Conservation Council's adopted best management practices and the requirements for demand management in Section 10631.

(g) Establish standards that recognize and provide credit to water suppliers that made substantial capital investments in urban water conservation since the drought of the early 1990s.

(h) Recognize and account for the investment of urban retail water suppliers in providing recycled water for beneficial uses.

(i) Require implementation of specified efficient water management practices for agricultural water suppliers.

(j) Support the economic productivity of California's agricultural, commercial, and industrial sectors.

(k) Advance regional water resources management.

10608.8. (a) Water use efficiency measures adopted and implemented pursuant to this part or Part 2.8 (commencing with Section 10800) are water conservation measures subject to the protections provided under Section 1011.

(2) Because an urban agency is not required to meet its urban water use target until 2020 pursuant to subdivision (b) of Section 10608.24, an urban retail water supplier's failure to meet those targets shall not establish a violation of law for purposes of any state administrative or judicial proceeding prior to
January 1, 2021. Nothing in this paragraph limits the use of data reported to the department or the board in litigation or an administrative proceeding. This paragraph shall become inoperative on January 1, 2021.

(3) To the extent feasible, the department and the board shall provide for the use of water conservation reports required under this part to meet the requirements of Section 1011 for water conservation reporting.

(b) This part does not limit or otherwise affect the application of Chapter 3.5 (commencing with Section 11340), Chapter 4 (commencing with Section 11370), Chapter 4.5 (commencing with Section 11400), and Chapter 5 (commencing with Section 11500) of Part 1 of Division 3 of Title 2 of the Government Code.

(c) This part does not require a reduction in the total water used in the agricultural or urban sectors, because other factors, including, but not limited to, changes in agricultural economics or population growth may have greater effects on water use. This part does not limit the economic productivity of California's agricultural, commercial, or industrial sectors.

(d) The requirements of this part do not apply to an agricultural water supplier that is a party to the Quantification Settlement Agreement, as defined in subdivision (a) of Section 1 of Chapter 617 of the Statutes of 2002, during the period within which the Quantification Settlement Agreement remains in effect. After the expiration of the Quantification Settlement Agreement, to the extent conservation water projects implemented as part of the Quantification Settlement Agreement remain in effect, the conserved water created as part of those projects shall be credited against the obligations of the agricultural water supplier pursuant to this part.

Chapter 2 Definitions

SECTION 10608.12

10608.12. Unless the context otherwise requires, the following definitions govern the construction of this part:

(a) "Agricultural water supplier" means a water supplier, either publicly or privately owned, providing water to 10,000 or more irrigated acres, excluding recycled water. "Agricultural water supplier" includes a supplier or contractor for water, regardless of the basis of right, that distributes or sells water for ultimate resale to customers. "Agricultural water supplier" does not include the department.

(b) "Base daily per capita water use" means any of the following:

(1) The urban retail water supplier's estimate of its average gross water use, reported in gallons per capita per day and calculated over a continuous 10-year period ending no earlier than December 31, 2004, and no later than December 31, 2010.
(2) For an urban retail water supplier that meets at least 10 percent of its 2008 measured retail water demand through recycled water that is delivered within the service area of an urban retail water supplier or its urban wholesale water supplier, the urban retail water supplier may extend the calculation described in paragraph (1) up to an additional five years to a maximum of a continuous 15-year period ending no earlier than December 31, 2004, and no later than December 31, 2010.

(3) For the purposes of Section 10608.22, the urban retail water supplier's estimate of its average gross water use, reported in gallons per capita per day and calculated over a continuous five-year period ending no earlier than December 31, 2007, and no later than December 31, 2010.

(c) "Baseline commercial, industrial, and institutional water use" means an urban retail water supplier's base daily per capita water use for commercial, industrial, and institutional users.

(d) "Commercial water user" means a water user that provides or distributes a product or service.

(e) "Compliance daily per capita water use" means the gross water use during the final year of the reporting period, reported in gallons per capita per day.

(f) "Disadvantaged community" means a community with an annual median household income that is less than 80 percent of the statewide annual median household income.

(g) "Gross water use" means the total volume of water, whether treated or untreated, entering the distribution system of an urban retail water supplier, excluding all of the following:

(1) Recycled water that is delivered within the service area of an urban retail water supplier or its urban wholesale water supplier.

(2) The net volume of water that the urban retail water supplier places into long-term storage.

(3) The volume of water the urban retail water supplier conveys for use by another urban water supplier.

(4) The volume of water delivered for agricultural use, except as otherwise provided in subdivision (f) of Section 10608.24.

(h) "Industrial water user" means a water user that is primarily a manufacturer or processor of materials as defined by the North American Industry Classification System code sectors 31 to 33, inclusive, or an entity that is a water user primarily engaged in research and development.

(i) "Institutional water user" means a water user dedicated to public service. This type of user includes, among other users, higher education institutions, schools, courts, churches, hospitals, government facilities, and nonprofit research institutions.
(j) "Interim urban water use target" means the midpoint between the urban retail water supplier's base daily per capita water use and the urban retail water supplier's urban water use target for 2020.

(k) "Locally cost effective" means that the present value of the local benefits of implementing an agricultural efficiency water management practice is greater than or equal to the present value of the local cost of implementing that measure.

(l) "Process water" means water used for producing a product or product content or water used for research and development, including, but not limited to, continuous manufacturing processes, water used for testing and maintaining equipment used in producing a product or product content, and water used in combined heat and power facilities used in producing a product or product content. Process water does not mean incidental water uses not related to the production of a product or product content, including, but not limited to, water used for restrooms, landscaping, air conditioning, heating, kitchens, and laundry.

(m) "Recycled water" means recycled water, as defined in subdivision (n) of Section 13050, that is used to offset potable demand, including recycled water supplied for direct use and indirect potable reuse, that meets the following requirements, where applicable:

(1) For groundwater recharge, including recharge through spreading basins, water supplies that are all of the following:

 (A) Metered.

 (B) Developed through planned investment by the urban water supplier or a wastewater treatment agency.

 (C) Treated to a minimum tertiary level.

 (D) Delivered within the service area of an urban retail water supplier or its urban wholesale water supplier that helps an urban retail water supplier meet its urban water use target.

(2) For reservoir augmentation, water supplies that meet the criteria of paragraph (1) and are conveyed through a distribution system constructed specifically for recycled water.

(n) "Regional water resources management" means sources of supply resulting from watershed-based planning for sustainable local water reliability or any of the following alternative sources of water:

(1) The capture and reuse of stormwater or rainwater.

(2) The use of recycled water.

(3) The desalination of brackish groundwater.
(4) The conjunctive use of surface water and groundwater in a manner that is consistent with the safe yield of the groundwater basin.

(o) "Reporting period" means the years for which an urban retail water supplier reports compliance with the urban water use targets.

(p) "Urban retail water supplier" means a water supplier, either publicly or privately owned, that directly provides potable municipal water to more than 3,000 end users or that supplies more than 3,000 acre-feet of potable water annually at retail for municipal purposes.

(q) "Urban water use target" means the urban retail water supplier's targeted future daily per capita water use.

(r) "Urban wholesale water supplier," means a water supplier, either publicly or privately owned, that provides more than 3,000 acre-feet of water annually at wholesale for potable municipal purposes.

Chapter 3 Urban Retail Water Suppliers

SECTION 10608.16-10608.44

10608.16.(a) The state shall achieve a 20-percent reduction in urban per capita water use in California on or before December 31, 2020.

(b) The state shall make incremental progress towards the state target specified in subdivision (a) by reducing urban per capita water use by at least 10 percent on or before December 31, 2015.

10608.20.(a) (1) Each urban retail water supplier shall develop urban water use targets and an interim urban water use target by July 1, 2011. Urban retail water suppliers may elect to determine and report progress toward achieving these targets on an individual or regional basis, as provided in subdivision (a) of Section 10608.28, and may determine the targets on a fiscal year or calendar year basis.

(2) It is the intent of the Legislature that the urban water use targets described in paragraph (1) cumulatively result in a 20-percent reduction from the baseline daily per capita water use by December 31, 2020.

(b) An urban retail water supplier shall adopt one of the following methods for determining its urban water use target pursuant to subdivision (a):

(1) Eighty percent of the urban retail water supplier's baseline per capita daily water use.

(2) The per capita daily water use that is estimated using the sum of the following performance standards:
(A) For indoor residential water use, 55 gallons per capita daily water use as a provisional standard. Upon completion of the department's 2016 report to the Legislature pursuant to Section 10608.42, this standard may be adjusted by the Legislature by statute.

(B) For landscape irrigated through dedicated or residential meters or connections, water efficiency equivalent to the standards of the Model Water Efficient Landscape Ordinance set forth in Chapter 2.7 (commencing with Section 490) of Division 2 of Title 23 of the California Code of Regulations, as in effect the later of the year of the landscape's installation or 1992. An urban retail water supplier using the approach specified in this subparagraph shall use satellite imagery, site visits, or other best available technology to develop an accurate estimate of landscaped areas.

(C) For commercial, industrial, and institutional uses, a 10-percent reduction in water use from the baseline commercial, industrial, and institutional water use by 2020.

(3) Ninety-five percent of the applicable state hydrologic region target, as set forth in the state's draft 20x2020 Water Conservation Plan (dated April 30, 2009). If the service area of an urban water supplier includes more than one hydrologic region, the supplier shall apportion its service area to each region based on population or area.

(4) A method that shall be identified and developed by the department, through a public process, and reported to the Legislature no later than December 31, 2010. The method developed by the department shall identify per capita targets that cumulatively result in a statewide 20-percent reduction in urban daily per capita water use by December 31, 2020. In developing urban daily per capita water use targets, the department shall do all of the following:

(A) Consider climatic differences within the state.

(B) Consider population density differences within the state.

(C) Provide flexibility to communities and regions in meeting the targets.

(D) Consider different levels of per capita water use according to plant water needs in different regions.

(E) Consider different levels of commercial, industrial, and institutional water use in different regions of the state.

(F) Avoid placing an undue hardship on communities that have implemented conservation measures or taken actions to keep per capita water use low.

(c) If the department adopts a regulation pursuant to paragraph (4) of subdivision (b) that results in a requirement that an urban retail water supplier achieve a reduction in daily per capita water use that is greater than 20 percent by December 31, 2020, an urban retail water supplier that adopted the method
Appendix B Sustainable Water Use and Demand Reduction (SB X7-7) Final

described in paragraph (4) of subdivision (b) may limit its urban water use target to a reduction of not more than 20 percent by December 31, 2020, by adopting the method described in paragraph (1) of subdivision (b).

(d) The department shall update the method described in paragraph (4) of subdivision (b) and report to the Legislature by December 31, 2014. An urban retail water supplier that adopted the method described in paragraph (4) of subdivision (b) may adopt a new urban daily per capita water use target pursuant to this updated method.

(e) An urban retail water supplier shall include in its urban water management plan due in 2010 pursuant to Part 2.6 (commencing with Section 10610) the baseline daily per capita water use, urban water use target, interim urban water use target, and compliance daily per capita water use, along with the bases for determining those estimates, including references to supporting data.

(f) When calculating per capita values for the purposes of this chapter, an urban retail water supplier shall determine population using federal, state, and local population reports and projections.

(g) An urban retail water supplier may update its 2020 urban water use target in its 2015 urban water management plan required pursuant to Part 2.6 (commencing with Section 10610).

(h) (1) The department, through a public process and in consultation with the California Urban Water Conservation Council, shall develop technical methodologies and criteria for the consistent implementation of this part, including, but not limited to, both of the following:

 (A) Methodologies for calculating base daily per capita water use, baseline commercial, industrial, and institutional water use, compliance daily per capita water use, gross water use, service area population, indoor residential water use, and landscaped area water use.

 (B) Criteria for adjustments pursuant to subdivisions (d) and (e) of Section 10608.24.

 (2) The department shall post the methodologies and criteria developed pursuant to this subdivision on its Internet Web site, and make written copies available, by October 1, 2010. An urban retail water supplier shall use the methods developed by the department in compliance with this part.

(i) (1) The department shall adopt regulations for implementation of the provisions relating to process water in accordance with subdivision (l) of Section 10608.12, subdivision (e) of Section 10608.24, and subdivision (d) of Section 10608.26.

 (2) The initial adoption of a regulation authorized by this subdivision is deemed to address an emergency, for purposes of Sections 11346.1 and 11349.6 of the Government Code, and the department is hereby exempted for that purpose from the requirements of subdivision (b) of Section 11346.1 of the
Government Code. After the initial adoption of an emergency regulation pursuant to this subdivision, the department shall not request approval from the Office of Administrative Law to readopt the regulation as an emergency regulation pursuant to Section 11346.1 of the Government Code.

(j) (1) An urban retail water supplier is granted an extension to July 1, 2011, for adoption of an urban water management plan pursuant to Part 2.6 (commencing with Section 10610) due in 2010 to allow the use of technical methodologies developed by the department pursuant to paragraph (4) of subdivision (b) and subdivision (h). An urban retail water supplier that adopts an urban water management plan due in 2010 that does not use the methodologies developed by the department pursuant to subdivision (h) shall amend the plan by July 1, 2011, to comply with this part.

(2) An urban wholesale water supplier whose urban water management plan prepared pursuant to Part 2.6 (commencing with Section 10610) was due and not submitted in 2010 is granted an extension to July 1, 2011, to permit coordination between an urban wholesale water supplier and urban retail water suppliers.

10608.22. Notwithstanding the method adopted by an urban retail water supplier pursuant to Section 10608.20, an urban retail water supplier's per capita daily water use reduction shall be no less than 5 percent of base daily per capita water use as defined in paragraph (3) of subdivision (b) of Section 10608.12. This section does not apply to an urban retail water supplier with a base daily per capita water use at or below 100 gallons per capita per day.

10608.24. (a) Each urban retail water supplier shall meet its interim urban water use target by December 31, 2015.

(b) Each urban retail water supplier shall meet its urban water use target by December 31, 2020.

(c) An urban retail water supplier's compliance daily per capita water use shall be the measure of progress toward achievement of its urban water use target.

(d) (1) When determining compliance daily per capita water use, an urban retail water supplier may consider the following factors:

(A) Differences in evapotranspiration and rainfall in the baseline period compared to the compliance reporting period.

(B) Substantial changes to commercial or industrial water use resulting from increased business output and economic development that have occurred during the reporting period.

(C) Substantial changes to institutional water use resulting from fire suppression services or other extraordinary events, or from new or expanded operations, that have occurred during the reporting period.

(2) If the urban retail water supplier elects to adjust its estimate of compliance daily per capita water use due to one or more of the factors described in
Appendix B Sustainable Water Use and Demand Reduction (SB X7-7) Final

paragraph (1), it shall provide the basis for, and data supporting, the adjustment in the report required by Section 10608.40.

(e) When developing the urban water use target pursuant to Section 10608.20, an urban retail water supplier that has a substantial percentage of industrial water use in its service area may exclude process water from the calculation of gross water use to avoid a disproportionate burden on another customer sector.

(f) (1) An urban retail water supplier that includes agricultural water use in an urban water management plan pursuant to Part 2.6 (commencing with Section 10610) may include the agricultural water use in determining gross water use. An urban retail water supplier that includes agricultural water use in determining gross water use and develops its urban water use target pursuant to paragraph (2) of subdivision (b) of Section 10608.20 shall use a water efficient standard for agricultural irrigation of 100 percent of reference evapotranspiration multiplied by the crop coefficient for irrigated acres.

(2) An urban retail water supplier, that is also an agricultural water supplier, is not subject to the requirements of Chapter 4 (commencing with Section 10608.48), if the agricultural water use is incorporated into its urban water use target pursuant to paragraph (1).

10608.26.(a) In complying with this part, an urban retail water supplier shall conduct at least one public hearing to accomplish all of the following:

(1) Allow community input regarding the urban retail water supplier's implementation plan for complying with this part.

(2) Consider the economic impacts of the urban retail water supplier's implementation plan for complying with this part.

(3) Adopt a method, pursuant to subdivision (b) of Section 10608.20, for determining its urban water use target.

(b) In complying with this part, an urban retail water supplier may meet its urban water use target through efficiency improvements in any combination among its customer sectors. An urban retail water supplier shall avoid placing a disproportionate burden on any customer sector.

(c) For an urban retail water supplier that supplies water to a United States Department of Defense military installation, the urban retail water supplier's implementation plan for complying with this part shall consider the conservation of that military installation under federal Executive Order 13514.

(d) (1) Any ordinance or resolution adopted by an urban retail water supplier after the effective date of this section shall not require existing customers as of the effective date of this section, to undertake changes in product formulation, operations, or equipment that would reduce process water use, but may provide technical assistance and financial incentives to those customers to implement efficiency measures for process water. This section shall not limit
an ordinance or resolution adopted pursuant to a declaration of drought emergency by an urban retail water supplier.

(2) This part shall not be construed or enforced so as to interfere with the requirements of Chapter 4 (commencing with Section 113980) to Chapter 13 (commencing with Section 114380), inclusive, of Part 7 of Division 104 of the Health and Safety Code, or any requirement or standard for the protection of public health, public safety, or worker safety established by federal, state, or local government or recommended by recognized standard setting organizations or trade associations.

10608.28. (a) An urban retail water supplier may meet its urban water use target within its retail service area, or through mutual agreement, by any of the following:

(1) Through an urban wholesale water supplier.

(2) Through a regional agency authorized to plan and implement water conservation, including, but not limited to, an agency established under the Bay Area Water Supply and Conservation Agency Act (Division 31 (commencing with Section 81300)).

(3) Through a regional water management group as defined in Section 10537.

(4) By an integrated regional water management funding area.

(5) By hydrologic region.

(6) Through other appropriate geographic scales for which computation methods have been developed by the department.

(b) A regional water management group, with the written consent of its member agencies, may undertake any or all planning, reporting, and implementation functions under this chapter for the member agencies that consent to those activities. Any data or reports shall provide information both for the regional water management group and separately for each consenting urban retail water supplier and urban wholesale water supplier.

10608.32. All costs incurred pursuant to this part by a water utility regulated by the Public Utilities Commission may be recoverable in rates subject to review and approval by the Public Utilities Commission, and may be recorded in a memorandum account and reviewed for reasonableness by the Public Utilities Commission.

10608.36. Urban wholesale water suppliers shall include in the urban water management plans required pursuant to Part 2.6 (commencing with Section 10610) an assessment of their present and proposed future measures, programs, and policies to help achieve the water use reductions required by this part.

10608.40. Urban water retail suppliers shall report to the department on their progress in meeting their urban water use targets as part of their urban water management plans.
submitted pursuant to Section 10631. The data shall be reported using a standardized form developed pursuant to Section 10608.52.

10608.42. (a) The department shall review the 2015 urban water management plans and report to the Legislature by July 1, 2017, on progress towards achieving a 20-percent reduction in urban water use by December 31, 2020. The report shall include recommendations on changes to water efficiency standards or urban water use targets to achieve the 20-percent reduction and to reflect updated efficiency information and technology changes.

(b) A report to be submitted pursuant to subdivision (a) shall be submitted in compliance with Section 9795 of the Government Code.

10608.43. The department, in conjunction with the California Urban Water Conservation Council, by April 1, 2010, shall convene a representative task force consisting of academic experts, urban retail water suppliers, environmental organizations, commercial water users, industrial water users, and institutional water users to develop alternative best management practices for commercial, industrial, and institutional users and an assessment of the potential statewide water use efficiency improvement in the commercial, industrial, and institutional sectors that would result from implementation of these best management practices. The task force, in conjunction with the department, shall submit a report to the Legislature by April 1, 2012, that shall include a review of multiple sectors within commercial, industrial, and institutional users and that shall recommend water use efficiency standards for commercial, industrial, and institutional users among various sectors of water use. The report shall include, but not be limited to, the following:

(a) Appropriate metrics for evaluating commercial, industrial, and institutional water use.

(b) Evaluation of water demands for manufacturing processes, goods, and cooling.

(c) Evaluation of public infrastructure necessary for delivery of recycled water to the commercial, industrial, and institutional sectors.

(d) Evaluation of institutional and economic barriers to increased recycled water use within the commercial, industrial, and institutional sectors.

(e) Identification of technical feasibility and cost of the best management practices to achieve more efficient water use statewide in the commercial, industrial, and institutional sectors that is consistent with the public interest and reflects past investments in water use efficiency.

10608.44. Each state agency shall reduce water use at facilities it operates to support urban retail water suppliers in meeting the target identified in Section 10608.16.
Chapter 4 Agricultural Water Suppliers

SECTION 10608.48

10608.48.(a) On or before July 31, 2012, an agricultural water supplier shall implement efficient water management practices pursuant to subdivisions (b) and (c).

(b) Agricultural water suppliers shall implement all of the following critical efficient management practices:

(1) Measure the volume of water delivered to customers with sufficient accuracy to comply with subdivision (a) of Section 531.10 and to implement paragraph (2).

(2) Adopt a pricing structure for water customers based at least in part on quantity delivered.

(c) Agricultural water suppliers shall implement additional efficient management practices, including, but not limited to, practices to accomplish all of the following, if the measures are locally cost effective and technically feasible:

(1) Facilitate alternative land use for lands with exceptionally high water duties or whose irrigation contributes to significant problems, including drainage.

(2) Facilitate use of available recycled water that otherwise would not be used beneficially, meets all health and safety criteria, and does not harm crops or soils.

(3) Facilitate the financing of capital improvements for on-farm irrigation systems.

(4) Implement an incentive pricing structure that promotes one or more of the following goals:

(A) More efficient water use at the farm level.

(B) Conjunctive use of groundwater.

(C) Appropriate increase of groundwater recharge.

(D) Reduction in problem drainage.

(E) Improved management of environmental resources.

(F) Effective management of all water sources throughout the year by adjusting seasonal pricing structures based on current conditions.

(5) Expand line or pipe distribution systems, and construct regulatory reservoirs to increase distribution system flexibility and capacity, decrease maintenance, and reduce seepage.
(6) Increase flexibility in water ordering by, and delivery to, water customers within operational limits.

(7) Construct and operate supplier spill and tailwater recovery systems.

(8) Increase planned conjunctive use of surface water and groundwater within the supplier service area.

(9) Automate canal control structures.

(10) Facilitate or promote customer pump testing and evaluation.

(11) Designate a water conservation coordinator who will develop and implement the water management plan and prepare progress reports.

(12) Provide for the availability of water management services to water users. These services may include, but are not limited to, all of the following:

 (A) On-farm irrigation and drainage system evaluations.

 (B) Normal year and real-time irrigation scheduling and crop evapotranspiration information.

 (C) Surface water, groundwater, and drainage water quantity and quality data.

 (D) Agricultural water management educational programs and materials for farmers, staff, and the public.

(13) Evaluate the policies of agencies that provide the supplier with water to identify the potential for institutional changes to allow more flexible water deliveries and storage.

(14) Evaluate and improve the efficiencies of the supplier's pumps.

(d) Agricultural water suppliers shall include in the agricultural water management plans required pursuant to Part 2.8 (commencing with Section 10800) a report on which efficient water management practices have been implemented and are planned to be implemented, an estimate of the water use efficiency improvements that have occurred since the last report, and an estimate of the water use efficiency improvements estimated to occur five and 10 years in the future. If an agricultural water supplier determines that an efficient water management practice is not locally cost effective or technically feasible, the supplier shall submit information documenting that determination.

(e) The data shall be reported using a standardized form developed pursuant to Section 10608.52.

(f) An agricultural water supplier may meet the requirements of subdivisions (d) and (e) by submitting to the department a water conservation plan submitted to the United States Bureau of Reclamation that meets the requirements described in Section 10828.
(g) On or before December 31, 2013, December 31, 2016, and December 31, 2021, the department, in consultation with the board, shall submit to the Legislature a report on the agricultural efficient water management practices that have been implemented and are planned to be implemented and an assessment of the manner in which the implementation of those efficient water management practices has affected and will affect agricultural operations, including estimated water use efficiency improvements, if any.

(h) The department may update the efficient water management practices required pursuant to subdivision (c), in consultation with the Agricultural Water Management Council, the United States Bureau of Reclamation, and the board. All efficient water management practices for agricultural water use pursuant to this chapter shall be adopted or revised by the department only after the department conducts public hearings to allow participation of the diverse geographical areas and interests of the state.

(i) (1) The department shall adopt regulations that provide for a range of options that agricultural water suppliers may use or implement to comply with the measurement requirement in paragraph (1) of subdivision (b).

(2) The initial adoption of a regulation authorized by this subdivision is deemed to address an emergency, for purposes of Sections 11346.1 and 11349.6 of the Government Code, and the department is thereby exempted for that purpose from the requirements of subdivision (b) of Section 11346.1 of the Government Code. After the initial adoption of an emergency regulation pursuant to this subdivision, the department shall not request approval from the Office of Administrative Law to readopt the regulation as an emergency regulation pursuant to Section 11346.1 of the Government Code.

Chapter 5 Sustainable Water Management

Section 10608.50

10608.50.(a) The department, in consultation with the board, shall promote implementation of regional water resources management practices through increased incentives and removal of barriers consistent with state and federal law. Potential changes may include, but are not limited to, all of the following:

(1) Revisions to the requirements for urban and agricultural water management plans.

(2) Revisions to the requirements for integrated regional water management plans.

(3) Revisions to the eligibility for state water management grants and loans.
(4) Revisions to state or local permitting requirements that increase water supply opportunities, but do not weaken water quality protection under state and federal law.

(5) Increased funding for research, feasibility studies, and project construction.

(6) Expanding technical and educational support for local land use and water management agencies.

(b) No later than January 1, 2011, and updated as part of the California Water Plan, the department, in consultation with the board, and with public input, shall propose new statewide targets, or review and update existing statewide targets, for regional water resources management practices, including, but not limited to, recycled water, brackish groundwater desalination, and infiltration and direct use of urban stormwater runoff.

Chapter 6 Standardized Data Collection

SECTION 10608.52

10608.52.(a) The department, in consultation with the board, the California Bay-Delta Authority or its successor agency, the State Department of Public Health, and the Public Utilities Commission, shall develop a single standardized water use reporting form to meet the water use information needs of each agency, including the needs of urban water suppliers that elect to determine and report progress toward achieving targets on a regional basis as provided in subdivision (a) of Section 10608.28.

(b) At a minimum, the form shall be developed to accommodate information sufficient to assess an urban water supplier's compliance with conservation targets pursuant to Section 10608.24 and an agricultural water supplier's compliance with implementation of efficient water management practices pursuant to subdivision (a) of Section 10608.48. The form shall accommodate reporting by urban water suppliers on an individual or regional basis as provided in subdivision (a) of Section 10608.28.

Chapter 7 Funding Provisions

Section 10608.56-10608.60

10608.56.(a) On and after July 1, 2016, an urban retail water supplier is not eligible for a water grant or loan awarded or administered by the state unless the supplier complies with this part.

(b) On and after July 1, 2013, an agricultural water supplier is not eligible for a water grant or loan awarded or administered by the state unless the supplier complies with this part.
(c) Notwithstanding subdivision (a), the department shall determine that an urban retail water supplier is eligible for a water grant or loan even though the supplier has not met the per capita reductions required pursuant to Section 10608.24, if the urban retail water supplier has submitted to the department for approval a schedule, financing plan, and budget, to be included in the grant or loan agreement, for achieving the per capita reductions. The supplier may request grant or loan funds to achieve the per capita reductions to the extent the request is consistent with the eligibility requirements applicable to the water funds.

(d) Notwithstanding subdivision (b), the department shall determine that an agricultural water supplier is eligible for a water grant or loan even though the supplier is not implementing all of the efficient water management practices described in Section 10608.48, if the agricultural water supplier has submitted to the department for approval a schedule, financing plan, and budget, to be included in the grant or loan agreement, for implementation of the efficient water management practices. The supplier may request grant or loan funds to implement the efficient water management practices to the extent the request is consistent with the eligibility requirements applicable to the water funds.

(e) Notwithstanding subdivision (a), the department shall determine that an urban retail water supplier is eligible for a water grant or loan even though the supplier has not met the per capita reductions required pursuant to Section 10608.24, if the urban retail water supplier has submitted to the department for approval documentation demonstrating that its entire service area qualifies as a disadvantaged community.

(f) The department shall not deny eligibility to an urban retail water supplier or agricultural water supplier in compliance with the requirements of this part and Part 2.8 (commencing with Section 10800), that is participating in a multiagency water project, or an integrated regional water management plan, developed pursuant to Section 75026 of the Public Resources Code, solely on the basis that one or more of the agencies participating in the project or plan is not implementing all of the requirements of this part or Part 2.8 (commencing with Section 10800).

10608.60.(a) It is the intent of the Legislature that funds made available by Section 75026 of the Public Resources Code should be expended, consistent with Division 43 (commencing with Section 75001) of the Public Resources Code and upon appropriation by the Legislature, for grants to implement this part. In the allocation of funding, it is the intent of the Legislature that the department give consideration to disadvantaged communities to assist in implementing the requirements of this part.

(b) It is the intent of the Legislature that funds made available by Section 75041 of the Public Resources Code, should be expended, consistent with Division 43 (commencing with Section 75001) of the Public Resources Code and upon appropriation by the Legislature, for direct expenditures to implement this part.
Chapter 8 Quantifying Agricultural Water Use Efficiency

SECTION 10608.64

10608.64. The department, in consultation with the Agricultural Water Management Council, academic experts, and other stakeholders, shall develop a methodology for quantifying the efficiency of agricultural water use. Alternatives to be assessed shall include, but not be limited to, determination of efficiency levels based on crop type or irrigation system distribution uniformity. On or before December 31, 2011, the department shall report to the Legislature on a proposed methodology and a plan for implementation. The plan shall include the estimated implementation costs and the types of data needed to support the methodology. Nothing in this section authorizes the department to implement a methodology established pursuant to this section.
Appendix C

District Notifications and Resolutions for UWMP
RESOLUTION NUMBER 1013
RESOLUTION OF THE BOARD OF DIRECTORS OF CARPINTERIA VALLEY WATER DISTRICT ADOPTING AND IMPLEMENTING THE AMENDED URBAN WATER MANAGEMENT PLAN 2016 UPDATE

WHEREAS the California Legislature enacted Assembly Bill 797 (Water Code Section 10610 et seq., known as the Urban Water Management Planning Act) during the 1983-1984 Regular Session, and as amended subsequently, which mandates that every supplier providing water for municipal purposes to more than 3,000 customers or supplying more than 3,000 acre feet of water annually, prepare an Urban Water Management Plan, the primary objective of which is to plan for the conservation and efficient use of water; and

WHEREAS the Carpinteria Valley Water District is an urban supplier of water providing water to a population of about 15,000 people; and

WHEREAS the Plan shall be periodically reviewed at least once every five years, and the District shall make any amendments or changes to its Plan which are indicated by the review; and

WHEREAS the Plan must be adopted, after public review and hearing, and filed with the California Department of Water Resources within thirty days of adoption; and

WHEREAS the District has therefore prepared and circulated for public review a draft Amended Urban Water Management Plan 2016 Update and a properly noticed public hearing regarding said Plan was held by the District Board of Directors on its July 27, 2016 meeting, and

NOW, THEREFORE, BE IT RESOLVED by the Board of Directors of the Carpinteria Valley Water District as follows:

1. The Amended Urban Water Management Plan 2016 Update is hereby adopted and to be on file at the District;

2. The District General Manager is hereby authorized and directed to file the Amended Urban Water Management Plan 2016 Update with the California Department of Water Resources within 30 days after this date;

3. The District General Manager is hereby directed to implement the Water Conservation Programs as set forth in the Amended Urban Water Management Plan 2016 Update, which includes water shortage contingency analysis and recommendations to the Board regarding necessary procedures, rules, and regulations to carry out effective and equitable water conservation and water recycling programs;
4. In a water shortage, the District General Manager is hereby authorized to bring to the Board for its approval an appropriate declaration of a Water Shortage Emergency according to the Water Shortage Stages and Triggers indicated in the Plan, and implement necessary elements of the Plan;

5. The District General Manager shall recommend to the Board of Directors additional regulations to carry out effective and equitable allocation of water resources during water shortages.

PASSED AND ADOPTED by Carpinteria Valley Water District Board of Directors, State of California, the 24th day of August, 2016 by the following vote:

AYES: Orozco, Holcombe, Van Wingerden and Roberts
NAYES: None
ABSENT: None
ABSTAIN: None

APPROVED:

Alonzo Orozco, President

ATTEST:

Ursula Santana, Secretary
AGENDA
REGULAR MEETING OF
THE BOARD OF DIRECTORS
CARPINTERIA VALLEY WATER DISTRICT
CARPINTERIA CITY HALL
5775 CARPINTERIA AVENUE
CARPINTERIA, CALIFORNIA 93013

Wednesday, August 24, 2016 at 5:30 p.m.

I. CALL TO ORDER AND PLEDGE OF ALLEGIANCE, President Orozco.

II. PUBLIC FORUM (Any person may address the Board of Directors on any matter
Within its jurisdiction which is not on the agenda.)

III. APPROVAL ITEMS

A. **Minutes of the Board meeting held on July 27, 2016.
B. **Monthly Bills

IV. OLD BUSINESS

**Consider adoption of Resolution No. 1013 Adopting and Implementing the Urban Water
Management Plan 2016 Update (for action, General Manager McDonald).

V. NEW BUSINESS

A. November 8, 2016 Election – Candidates running for Director (for information, General
Manager McDonald).

B. **Consider adoption of Resolution No. 1014 Adopting a new Director to the Board of
Directors (for action, General Manager McDonald).

C. **Consider Board Reorganization of standing Board committees for action on September
28, 2016 (for information, General Manager McDonald).

D. **Consider executing CCWA Participation Agreement for Acquisition of Suspended
Table A State Water (for action, General Manager McDonald).

E. **Consider Approval of RMC Proposal not to exceed $60,000 for work related to a
Recycled Water Project (for action, General Manager McDonald).

F. **Consider Approval of bid from General Pump to Rehabilitate the High School Well for
an amount not to exceed $120,270 (for action, General Manager McDonald).

**Indicates attachment of document to agenda packet.
G. **Consider Approval of Pueblo Water Resources Proposal not to exceed $14,355 for work related to AB3030 Groundwater Annual Report (for action, General Manager McDonald).

H. **Consider adoption of Resolution No. 1015 Declaring certain property surplus and authorizing sale by sealed bid (for action, General Manager McDonald).

I. **Consider General Manager’s recommendation for application of Rule No. 15 to provide a credit in the amount of $188.50 to Account No. 11-115428-06 (for action, Assistant General Manager Rosales).

VI. DIRECTOR REPORTS (for information)

A. **Central Coast Water Authority meeting, July 28, 2016 Director Van Wingerden.

B. **Cachuma Operations and Maintenance Board – Fisheries meeting, August 18, 2016 – Director Holcombe

C. **Strategic Water Management Committee meeting, August 18, 2016 – Directors Roberts and Orozco.

D. **Cachuma Operations and Maintenance Board, August 22, 2016 – Director Holcombe.

VII. GENERAL MANAGER REPORTS (for information)

A. **Engineering
B. **Operations & Maintenance
C. **Water Supply & Drought Planning

VIII. CLOSED SESSION

CLOSED SESSION: CONFERENCE WITH LEGAL COUNSEL-POTENTIAL LITIGATION PURSUANT TO GOVERNMENT CODE 54956.9(B)(3)(C): JANELLE BRUCKER: ENCROACHMENT

IX. CONSIDER DATES AND ITEMS FOR AGENDA FOR:

CARPINTERIA VALLEY WATER DISTRICT BOARD MEETING OF SEPTEMBER 28, 2016 AT 5:30 P.M., CARPINTERIA CITY HALL, 5775 CARPINTERIA AVENUE, CARPINTERIA, CALIFORNIA.

X. ADJOURNMENT.

Ursula Santana, Secretary

Note: The above Agenda was posted at Carpinteria Valley Water District Administrative Office in view of the public no later than 5:30 p.m., August 21, 2016. The Americans with Disabilities Act provides that no

**Indicates attachment of document to agenda packet.
qualified individual with a disability shall be excluded from participation in, or denied benefits of, the District’s programs, services, or activities because of any disability. If you need special assistance to participate in this meeting, please contact the District Office at (805) 684-2816. Notification at least twenty-four (24) hours prior to the meeting will enable the District to make appropriate arrangements.

Materials related to an item on this Agenda submitted to the Board of Directors after distribution of the agenda packet are available for public inspection in the Carpinteria Valley Water district offices located at 1301 Santa Ynez Avenue, Carpinteria during normal business hours, from 8 am to 5 pm.
I. CALL TO ORDER

II. PUBLIC FORUM (Any person may address the Strategic Water Management Committee on any matter within its jurisdiction which is not on the agenda)

III. OLD BUSINESS -none

IV. NEW BUSINESS.
 A. Urban Water Management Plan adoption
 B. Consider Shelby Kenwood MOA
 C. Suspended Table A State Water acquisition
 D. Recycled Water Project Update
 E. AB3030 Management Annual Report

V. ADJOURNMENT

Ursula Santana, Secretary

Note: The above Agenda was posted at Carpinteria Valley Water District Administrative Office in view of the public no later than 8:00 a.m., August 15, 2016. The Americans with Disabilities Act provides that no qualified individual with a disability shall be excluded from participation in, or denied benefits of, the District’s programs, services, or activities because of any disability. If you need special assistance to participate in this meeting, please contact the District Office at (805) 684-2816. Notification at least twenty-four (24) hours prior to the meeting will enable the District to make appropriate arrangements.

Materials related to an item on this Agenda submitted to the Board of Directors after distribution of the agenda packet are available for public inspection in the Carpinteria Valley Water district offices located at 1301 Santa Ynez Avenue, Carpinteria during normal business hours, from 8 am to 5 pm.
**Indicates attachment of document to agenda packet.
I. CALL TO ORDER AND PLEDGE OF ALLEGIANCE, President Orozco.

II. PUBLIC FORUM (Any person may address the Board of Directors on any matter Within its jurisdiction which is not on the agenda.)

III. APPROVAL ITEMS

A. **Minutes of the Board meeting held on June 22, 2016.
B. **Monthly Bills
C. **4th Quarter Director Reimbursement Report

IV. OLD BUSINESS - none

V. NEW BUSINESS

A. *Letter dated 6/21/16 from Jeff Hodge, GM of Santa Ynez Community Services District regarding the Coastal Network, Seat B of CSDA Board of Directors (for information, President Orozco).

B. * Public Hearing 2016 Urban Water Management Plan Update (for discussion, General Manager Mc Donald).

C. *The sale of a portion of the CVWD State Water Project Allotment (for discussion, General Manager Mc Donald).

D. *Approve Grand Jury Report Response by the Board as presented (for action, General Manager Mc Donald).

E. SGMA Boundary Modification Request Status (for information, General Manager Mc Donald).

F. *Approve Credit Request 14-146042-02 Amount $341.25 (for action, Assistant General Manager Rosales).

**Indicates attachment of document to agenda packet.
G. *Resolution 1012 updating authorized check signers on the District’s various bank accounts (for action, Assistant General Manager Rosales).

H. *ACWA Region 5 Agricultural Program & Tour- September 18 & 19 (for action, President Orozco).

VI. DIRECTOR REPORTS (for information)

A. **Central Coast Water Authority meeting, June 23, 2016 Director Van Wingerden.

B. **Rate & Budget Committee meeting, June 24, 2016 – Directors Holcombe and Roberts.

C. ** Cachuma Operations and Maintenance Board meeting, June 27, 2016 and July 25, 2016 – Director Holcombe.

D. **Community Outreach Committee meeting, July 5, 2016 – Directors Orozco and Van Wingerden.

E. **Ad hoc Personnel Committee meeting, July 18, 2016- Directors Orozco and Holcombe.

F. **Cachuma Operations and Maintenance Board – Fisheries meeting, July 19, 2016 – Director Holcombe

G. **Strategic Water Manager Committee meeting, July 25, 2016 – Directors Roberts and Orozco.

VII. GENERAL MANAGER REPORTS (for information)

A. **Finance

B. **Engineering

C. **Water Supply & Drought Planning

VIII. CLOSED SESSION

CLOSED SESSION: PURSUANT TO GOVERNMENT CODE SECTION 54957.
PUBLIC EMPLOYEE APPOINTMENT
TITLE: DISTRICT ENGINEER

IX. CONSIDER DATES AND ITEMS FOR AGENDA FOR:

CARPINTERIA VALLEY WATER DISTRICT BOARD MEETING OF AUGUST 24, 2016
AT 5:30 P.M., CARPINTERIA CITY HALL, 5775 CARPINTERIA AVENUE,
CARPINTERIA, CALIFORNIA.

X. ADJOURNMENT.
Note: The above Agenda was posted at Carpinteria Valley Water District Administrative Office in view of the public no later than 5:30 p.m., July 24, 2016. The Americans with Disabilities Act provides that no qualified individual with a disability shall be excluded from participation in, or denied benefits of, the District’s programs, services, or activities because of any disability. If you need special assistance to participate in this meeting, please contact the District Office at (805) 684-2816. Notification at least twenty-four (24) hours prior to the meeting will enable the District to make appropriate arrangements.

Materials related to an item on this Agenda submitted to the Board of Directors after distribution of the agenda packet are available for public inspection in the Carpinteria Valley Water district offices located at 1301 Santa Ynez Avenue, Carpinteria during normal business hours, from 8 am to 5 pm.
Notice to Inform you of a Public Hearing about Carpinteria Valley Water District’s Urban Water Management Plan

Notice is hereby given that a public hearing about the District’s Urban Water Management Plan (UWMP) will be held by the Board of Directors of the Carpinteria Valley Water District at their regular Board meeting on July 27, 2016 at 5:30 p.m.

Carpinteria City Hall
5775 Carpinteria Ave., Carpinteria, CA 93013

This Board meeting will include, but not be limited to, discussion on the matter of the District's Urban Water Management Plan. All interested persons are invited to attend, participate, and be heard.

The Draft UWMP will be available for review at the District and on its website, www.CVWD.net. For additional information, please contact General Manager, Robert McDonald at (805) 684-2816 or Bob@cvwd.net.
May 12, 2016

Mr. Dave Durflinger
City Manager
City of Carpinteria
5775 Carpinteria Ave.
Carpinteria, CA 93013

Subject: Preparation of Urban Water Management Plan 2016 Update

Dear Mr. Durflinger,

This letter is to notify you that the Carpinteria Valley Water District (District), in compliance with the State Water Code, is in the midst of preparing its Urban Water Management Plan (UWMP) 2016 Update. This UWMP is a public statement of the goals, objectives, and strategies needed to maintain a reliable water supply for the District’s customers. You are being notified as required by the State Water Code.

It is anticipated that the District will conduct a public hearing regarding the Draft UWMP at a regular Board meeting in June 2016.

All District customers are encouraged to review the Draft UWMP and attend the public hearing. The Draft UWMP will be available for viewing and comment at the District office as well as on the District website, www.cvwd.net. For additional information, please feel free to contact me at (805) 684-2816 extension 107or Bob@cvwd.net. Thank you for your attention on this matter.

Sincerely,

Bob McDonald, P.E.
Acting General Manager
Appendix D

DWR UWMP Tables
<table>
<thead>
<tr>
<th>Public Water System Number</th>
<th>Public Water System Name</th>
<th>Number of Municipal Connections 2015</th>
<th>Volume of Water Supplied 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>4210001</td>
<td>Carpinteria Valley Water District</td>
<td>4,492</td>
<td>4,137</td>
</tr>
</tbody>
</table>

| TOTAL | | 4,492 | 4,137 |

Notes: CVWD, 2016.
<table>
<thead>
<tr>
<th>Select Only One</th>
<th>Type of Plan</th>
<th>Name of RUWMP or Regional Alliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Individual UWMP</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>Water Supplier is also a member of a RUWMP</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>Water Supplier is also a member of a Regional Alliance</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>Regional Urban Water Management Plan (RUWMP)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016.
Table 2-3: Agency Identification

<table>
<thead>
<tr>
<th>Type of Agency (select one or both)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Agency is a wholesaler</td>
<td></td>
</tr>
<tr>
<td>☑ Agency is a retailer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fiscal or Calendar Year (select one)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ UWMP Tables Are in Calendar Years</td>
<td></td>
</tr>
<tr>
<td>☐ UWMP Tables Are in Fiscal Years</td>
<td></td>
</tr>
</tbody>
</table>

If Using Fiscal Years Provide Month and Date that the Fiscal Year Begins (mm/dd)

<table>
<thead>
<tr>
<th>Units of Measure Used in UWMP (select from Drop down)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>AF</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016.
Table 2-4 Retail: Water Supplier Information Exchange

The retail supplier has informed the following wholesale supplier(s) of projected water use in accordance with CWC 10631.

<table>
<thead>
<tr>
<th>Wholesale Water Supplier Name (Add additional rows as needed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Coast Water Authority</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016.
Table 3-1 Retail: Population - Current and Projected

<table>
<thead>
<tr>
<th>Population Served</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040(opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14,993</td>
<td>15,760</td>
<td>15,920</td>
<td>16,080</td>
<td>16,240</td>
<td>16,400</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
Table 4-1 Retail: Demands for Potable and Raw Water - Actual

<table>
<thead>
<tr>
<th>Use Type (Add additional rows as needed)</th>
<th>2015 Actual</th>
<th>Additional Description (as needed)</th>
<th>Level of Treatment When Delivered Drop down list</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family</td>
<td></td>
<td>Drinking Water</td>
<td></td>
<td>746</td>
</tr>
<tr>
<td>Multi-Family</td>
<td></td>
<td>Drinking Water</td>
<td></td>
<td>415</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td>Drinking Water</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td>Drinking Water</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Institutional/Governmental</td>
<td></td>
<td>includes 25 AF sales at ag rates</td>
<td>Drinking Water</td>
<td>105</td>
</tr>
<tr>
<td>Landscape</td>
<td></td>
<td>Drinking Water</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Agricultural irrigation</td>
<td></td>
<td>Drinking Water</td>
<td></td>
<td>2,130</td>
</tr>
<tr>
<td>Losses</td>
<td></td>
<td>Drinking Water</td>
<td></td>
<td>414</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>4,162</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
<table>
<thead>
<tr>
<th>Use Type</th>
<th>Additional Description (as needed)</th>
<th>Projected Water Use Report To the Extent that Records are Available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020</td>
</tr>
<tr>
<td>Single Family</td>
<td></td>
<td>780</td>
</tr>
<tr>
<td>Multi-Family</td>
<td></td>
<td>413</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Institutional/Governmental</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Landscape</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Agricultural irrigation</td>
<td></td>
<td>2,090</td>
</tr>
<tr>
<td>Losses</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>4,148</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
Table 4-3 Retail: Total Water Demands

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040 (opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable and Raw Water * From Tables 4-1 and 4-2</td>
<td>4,162</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
<tr>
<td>Recycled Water Demand* * From Table 6-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL WATER DEMAND</td>
<td>4,162</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
</tbody>
</table>

*Recycled water demand fields will be blank until Table 6-4 is complete.

NOTES: CVWD, 2016
<table>
<thead>
<tr>
<th>Reporting Period Start Date (mm/yyyy)</th>
<th>Volume of Water Loss*</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/2015</td>
<td>171</td>
</tr>
</tbody>
</table>

*Taken from the field "Water Losses" (a combination of apparent losses and real losses) from the AWWA worksheet.

NOTES: CVWD, 2016. See Appendix N.
<table>
<thead>
<tr>
<th>Table 4-5 Retail Only: Inclusion in Water Use Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are Future Water Savings Included in Projections?</td>
</tr>
<tr>
<td>(Refer to Appendix K of UWMP Guidebook)</td>
</tr>
<tr>
<td>Drop down list (y/n)</td>
</tr>
<tr>
<td>If "Yes" to above, state the section or page number, in the cell to the right, where citations of the codes, ordinances, etc... utilized in demand projections are found.</td>
</tr>
<tr>
<td>Are Lower Income Residential Demands Included In Projections?</td>
</tr>
<tr>
<td>Drop down list (y/n)</td>
</tr>
<tr>
<td>NOTES: CVWD, 2016</td>
</tr>
<tr>
<td>Baseline Period</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>10-15 year</td>
</tr>
<tr>
<td>5 Year</td>
</tr>
</tbody>
</table>

*All values are in Gallons per Capita per Day (GPCD)

NOTES: CVWD, 2016
<table>
<thead>
<tr>
<th>Actual 2015 GPCD*</th>
<th>2015 Interim Target GPCD*</th>
<th>Optional Adjustments to 2015 GPCD</th>
<th>From 2015 GPCD* (Adjusted if applicable)</th>
<th>Did Supplier Achieve Targeted Reduction for 2015? Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>123</td>
<td>Extraordinary Events*</td>
<td>Economic Adjustment*</td>
<td>Weather Normalization*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*All values are in Gallons per Capita per Day (GPCD)

NOTES: CVWD, 2016
<table>
<thead>
<tr>
<th>Groundwater Type</th>
<th>Location or Basin Name</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvial Basin</td>
<td>Carpinteria Basin</td>
<td>1,365</td>
<td>1,174</td>
<td>312</td>
<td>1,434</td>
<td>2,943</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1,365</td>
<td>1,174</td>
<td>312</td>
<td>1,434</td>
<td>2,943</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016

Supplier does not pump groundwater. The supplier will not complete the table below.

Add additional rows as needed.
Table 6.2 Retail: Wastewater Collected Within Service Area in 2015

<table>
<thead>
<tr>
<th>Wastewater Collection Agency</th>
<th>Wastewater Volume Metered or Estimated?</th>
<th>Volume of Wastewater Collected from UWMP Service Area 2015</th>
<th>Name of Wastewater Treatment Agency Receiving Collected Wastewater</th>
<th>Treatment Plant Name</th>
<th>Is WWTP Located Within UWMP Area?</th>
<th>Is WWTP Operation Contracted to a Third Party? (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpinteria Sanitary District</td>
<td>Metered</td>
<td>1.12</td>
<td>Carpinteria Sanitary District</td>
<td>CSD Wastewater Treatment Facility</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Total Wastewater Collected from Service Area in 2015:

1.12

NOTES: Carpinteria Sanitary District, 2016
Table 6-3 Retail: Wastewater Treatment and Discharge Within Service Area in 2015

<table>
<thead>
<tr>
<th>Wastewater Treatment Plant Name</th>
<th>Discharge Location Name or Identifier</th>
<th>Discharge Location Description</th>
<th>Wastewater Discharge ID Number (optional)</th>
<th>Method of Disposal</th>
<th>Does This Plant Treat Wastewater Generated Outside the Service Area?</th>
<th>Treatment Level</th>
<th>Wastewater Treated</th>
<th>Discharged Treated Wastewater</th>
<th>Recycled Within Service Area</th>
<th>Recycled Outside of Service Area</th>
<th>2015 volumes (MGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpinteria Sanitary District Wastewater Treatment Facility</td>
<td>Pacific Ocean</td>
<td>34°23'18" N x 119°31'18" W</td>
<td>213332</td>
<td>Ocean outfall</td>
<td>Yes</td>
<td>Secondary, Disinfected - 23</td>
<td>1.12</td>
<td>1.12</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Total 1.12 1.12 0.00 0.00

NOTES: Carpinteria Sanitary District, 2016. Wastewater generated outside service area is from Toro Canyon.

No wastewater is treated or disposed of within the UWMP service area. The supplier will not complete the table below.

Add additional rows as needed.
Table 6-4 Retail: Current and Projected Recycled Water Direct Beneficial Uses Within Service Area

<table>
<thead>
<tr>
<th>Beneficial Use Type</th>
<th>General Description of 2015 Uses</th>
<th>Level of Treatment Drop down list</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040 (opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural irrigation</td>
<td>Landscape irrigation (excludes golf courses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golf course irrigation</td>
<td>Commercial use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial use</td>
<td>Geothermal and other energy production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seawater intrusion barrier</td>
<td>Recreational impoundment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands or wildlife habitat</td>
<td>Groundwater recharge (IPR)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface water augmentation (IPR)*</td>
<td>Direct potable reuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (Provide General Description)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

IPR - Indirect Potable Reuse

Notes: CVWD, 2016. Carpinteria Sanitary District, 2016. CVWD, Carpinteria Sanitary District, and City of Carpinteria are currently evaluating potential long-term use of recycled water. However, CVWD chooses a conservative estimate which assumes no recycled water available for direct or indirect use until a project is defined, designed, financed, and constructed.
<table>
<thead>
<tr>
<th>Use Type</th>
<th>2010 Projection for 2015</th>
<th>2015 Actual Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural irrigation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landscape irrigation (excludes golf courses)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Golf course irrigation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commercial use</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Industrial use</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geothermal and other energy production</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seawater intrusion barrier</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recreational impoundment</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wetlands or wildlife habitat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater recharge (IPR)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface water augmentation (IPR)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Direct potable reuse</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Recycled water was not used in 2010 nor projected for use in 2015. The supplier will not complete the table below.

NOTES: CVWD, 2016
Table 6-6 Retail: Methods to Expand Future Recycled Water Use

<table>
<thead>
<tr>
<th>Name of Action</th>
<th>Description</th>
<th>Planned Implementation Year</th>
<th>Expected Increase in Recycled Water Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>Supplier does not plan to expand recycled water use in the future. Supplier will not complete the table below but will provide narrative explanation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide page location of narrative in UWMP

Add additional rows as needed

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 0

NOTES: CVWD, 2016. CVWD, Carpinteria Sanitary District, and City of Carpinteria are currently evaluating potential long-term use of recycled water. However, CVWD chooses a conservative estimate which assumes no recycled water available for direct or indirect use until a project is defined, designed, financed, and constructed.
Table 6-7 Retail: Expected Future Water Supply Projects or Programs

No expected future water supply projects or programs that provide a quantifiable increase to the agency’s water supply. Supplier will not complete the table below.

Some or all of the supplier’s future water supply projects or programs are not compatible with this table and are described in a narrative format.

Provide page location of narrative in the UWMP.

<table>
<thead>
<tr>
<th>Name of Future Projects or Programs</th>
<th>Joint Project with other agencies?</th>
<th>Description (if needed)</th>
<th>Planned Implementation Year</th>
<th>Planned for Use in Year Type</th>
<th>Expected Increase in Water Supply to Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Well</td>
<td>No</td>
<td>Construct new local well</td>
<td>2019</td>
<td>All Year Types</td>
<td>100-1000</td>
</tr>
<tr>
<td>Add SWP Suspended Table A Water</td>
<td>No</td>
<td>Increase SWP water purchase</td>
<td>2018</td>
<td>All Year Types</td>
<td>1,000</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. CVWD, Carpinteria Sanitary District, and City of Carpinteria are currently evaluating potential long-term use of recycled water. However, CVWD chooses a conservative estimate which assumes no recycled water available for direct or indirect use until a project is defined, designed, financed, and constructed.
<table>
<thead>
<tr>
<th>Water Supply</th>
<th>Additional Detail on Water Supply</th>
<th>Actual Volume</th>
<th>Water Quality Drop Down List</th>
<th>Total Right or Safe Yield (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater</td>
<td>local</td>
<td>2,943</td>
<td>Drinking Water</td>
<td>3,000</td>
</tr>
<tr>
<td>Surface water</td>
<td>Cachuma - local</td>
<td>468</td>
<td>Drinking Water</td>
<td>2,813</td>
</tr>
<tr>
<td>Purchased or Imported Water</td>
<td>SWP</td>
<td>490</td>
<td>Drinking Water</td>
<td>1,800</td>
</tr>
<tr>
<td>Exchanges</td>
<td>SWP with ID#1</td>
<td>246</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4,147</td>
<td></td>
<td>8,013</td>
</tr>
</tbody>
</table>

Notes: CVWD, 2016. Current conservative estimate of long term average for CVWD groundwater pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands.
<table>
<thead>
<tr>
<th>Water Supply</th>
<th>Additional Detail on Water Supply</th>
<th>Projected Water Supply Report To the Extent Practicable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reasonably Available Volume</td>
<td>Total Right or Safe Yield (optional)</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>2025</td>
</tr>
<tr>
<td>Groundwater</td>
<td>1,400</td>
<td>3,000</td>
</tr>
<tr>
<td>Surface water</td>
<td>Cachuma - local</td>
<td>1,970</td>
</tr>
<tr>
<td>Purchased or Imported Water</td>
<td>SWP</td>
<td>850</td>
</tr>
<tr>
<td>Exchanges</td>
<td>SWP with ID#1</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>4,620</td>
<td>8,013</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. Current conservative estimate of long term average for CVWD groundwater pumping is approximately 1,400 AFY which is consistent with the Basin sustainable-yield; CVWD anticipates that pumping would be increased up to the operational yield of 3,000 AFY to offset demands.
<table>
<thead>
<tr>
<th>Year Type</th>
<th>Base Year</th>
<th>Available Supplies if Year Type Repeats</th>
<th>Volume Delivered</th>
<th>% of Average Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Year</td>
<td>2009</td>
<td>Quantification of available supplies is not compatible with this table and is provided elsewhere in the UWMP. Location __________________________</td>
<td>4920</td>
<td>100%</td>
</tr>
<tr>
<td>Single-Dry Year</td>
<td>2014</td>
<td>Quantification of available supplies is provided in this table as either volume only, percent only, or both.</td>
<td>4452</td>
<td>100%</td>
</tr>
<tr>
<td>Multiple-Dry Years 1st Year</td>
<td>2012</td>
<td></td>
<td>4452</td>
<td>90%</td>
</tr>
<tr>
<td>Multiple-Dry Years 2nd Year</td>
<td>2013</td>
<td></td>
<td>5052</td>
<td>103%</td>
</tr>
<tr>
<td>Multiple-Dry Years 3rd Year</td>
<td>2014</td>
<td></td>
<td>4452</td>
<td>90%</td>
</tr>
<tr>
<td>Multiple-Dry Years 4th Year Optional</td>
<td>2015</td>
<td></td>
<td>3852</td>
<td>78%</td>
</tr>
<tr>
<td>Multiple-Dry Years 5th Year Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple-Dry Years 6th Year Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agency may use multiple versions of Table 7-1 if different water sources have different base years and the supplier chooses to report the base years for each water source separately. If an agency uses multiple versions of Table 7-1, in the "Note" section of each table, state that multiple versions of Table 7-1 are being used and identify the particular water source that is being reported in each table.

NOTES: CVWD, 2016
Table 7-2 Retail: Normal Year Supply and Demand Comparison

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040 (Opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((autofill from Table 6-9))</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
<td>4,620</td>
</tr>
<tr>
<td>Demand totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((autofill from Table 4-3))</td>
<td>4,148</td>
<td>4,163</td>
<td>4,177</td>
<td>4,192</td>
<td>4,205</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>472</td>
<td>457</td>
<td>443</td>
<td>428</td>
<td>415</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
Table 7-3 Retail: Single Dry Year Supply and Demand Comparison

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040 (Opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply totals</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
<td>5,212</td>
</tr>
<tr>
<td>Demand totals</td>
<td>4,770</td>
<td>4,787</td>
<td>4,804</td>
<td>4,821</td>
<td>4,836</td>
</tr>
<tr>
<td>Difference</td>
<td>442</td>
<td>425</td>
<td>408</td>
<td>391</td>
<td>376</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. Supply represents up to 3,000 AFY local groundwater (operational yield), 1,970 AFY cachuma water, 242 AFY SWP water (11% as per DWR Reliability Report, 2014)
<table>
<thead>
<tr>
<th>Year</th>
<th>Supply totals</th>
<th>Demand totals</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year</td>
<td>6,814</td>
<td>4,148</td>
<td>2,666</td>
</tr>
<tr>
<td></td>
<td>6,151</td>
<td>4,163</td>
<td>1,988</td>
</tr>
<tr>
<td></td>
<td>6,151</td>
<td>4,177</td>
<td>1,974</td>
</tr>
<tr>
<td></td>
<td>6,151</td>
<td>4,192</td>
<td>1,959</td>
</tr>
<tr>
<td></td>
<td>6,151</td>
<td>4,205</td>
<td>1,946</td>
</tr>
<tr>
<td>Second year</td>
<td>6,561</td>
<td>4,770</td>
<td>1,791</td>
</tr>
<tr>
<td></td>
<td>6,140</td>
<td>4,787</td>
<td>1,353</td>
</tr>
<tr>
<td></td>
<td>6,126</td>
<td>4,804</td>
<td>1,322</td>
</tr>
<tr>
<td></td>
<td>6,211</td>
<td>4,821</td>
<td>1,390</td>
</tr>
<tr>
<td></td>
<td>6,298</td>
<td>4,836</td>
<td>1,462</td>
</tr>
<tr>
<td>Third year</td>
<td>5,019</td>
<td>4,438</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>4,767</td>
<td>4,454</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>4,936</td>
<td>4,469</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>5,004</td>
<td>4,485</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td>5,176</td>
<td>4,499</td>
<td>676</td>
</tr>
<tr>
<td>Fourth year</td>
<td>3,803</td>
<td>3,526</td>
<td>277</td>
</tr>
<tr>
<td>(optional)</td>
<td>3,795</td>
<td>3,539</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>3,669</td>
<td>3,550</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>3,721</td>
<td>3,563</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>3,879</td>
<td>3,574</td>
<td>305</td>
</tr>
<tr>
<td>Fifth year</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixth year</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. Supply represents up to 2,800 AFY local groundwater, 1,970 AFY Cachuma Project water and CP carryover water, and 682 AFY SWP water (31% as per DWR Reliability Report, 2014) and SWP carryover water.
Table 8-1 Retail Stages of Water Shortage Contingency Plan

<table>
<thead>
<tr>
<th>Stage</th>
<th>Percent Supply Reduction</th>
<th>Water Supply Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15%</td>
<td>Up to 15% supply reduction</td>
</tr>
<tr>
<td>2</td>
<td>25%</td>
<td>15% to 30% supply reduction</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
<td>30% to 50% supply reduction</td>
</tr>
</tbody>
</table>

1 One stage in the Water Shortage Contingency Plan must address a water shortage of 50%.

NOTE: CVWD, 2016
Table 8-2 Retail Only: Restrictions and Prohibitions on End Uses

<table>
<thead>
<tr>
<th>Stage</th>
<th>Restrictions and Prohibitions on End Users</th>
<th>Additional Explanation or Reference (optional)</th>
<th>Penalty, Charge, or Other Enforcement? Drop Down List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Landscape - Restrict or prohibit runoff from landscape irrigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Landscape - Limit landscape irrigation to specific times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CII - Restaurants may only serve water upon request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CII - Lodging establishment must offer opt out of linen service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Water Features - Restrict water use for decorative water features, such as fountains</td>
<td>Non-recirculating fountains prohibited</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Other - Customers must repair leaks, breaks, and malfunctions in a timely manner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Other - Prohibit vehicle washing except at facilities using recycled or recirculating water</td>
<td>Washing of boats is also included in the prohibition.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Other - Prohibit use of potable water for washing hard surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Landscape - Restrict or prohibit runoff from landscape irrigation</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Landscape - Limit landscape irrigation to specific times</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Landscape - Limit landscape irrigation to specific days</td>
<td>Landscape irrigation is limited to no more than 2 days per week.</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Landscape - Other landscape restriction or prohibition</td>
<td>Irrigation of turf or ornamental landscapes during and forty-eight hours following measurable rainfall is prohibited.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Landscape - Other landscape restriction or prohibition</td>
<td>Irrigation of ornamental turf on public street medians is prohibited.</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Landscape - Other landscape restriction or prohibition</td>
<td>Irrigation of landscapes outside newly constructed homes and buildings that is not delivered by drip or micro-spray systems is prohibited.</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>CII - Lodging establishment must offer opt out of linen service</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>CII - Restaurants may only serve water upon request</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>CII - Other CII restriction or prohibition</td>
<td>CII customers shall implement water efficiency measures to reduce potable water usage by 25% for each month as compared to the amount used in the same month in 2013.</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>CII - Other CII restriction or prohibition</td>
<td>CII customers providing showers must post drought notices and promote limitation of shower use.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>CII - Other CII restriction or prohibition</td>
<td>CII facilities with independent non-District source of water supply shall limit outdoor irrigation to nor more than two days per week.</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Water Features - Restrict water use for decorative water features, such as fountains</td>
<td>Non-recirculating fountains prohibited</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Other water feature or swimming pool restriction</td>
<td>Pools may be drained and refilled up to one third of the volume per year unless authorized by CVWD</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Other - Customers must repair leaks, breaks, and malfunctions in a timely manner</td>
<td>Repairs must be made within seventy-two (72) hours of notification.</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Other - Require automatic shut of hoses</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Other - Prohibit use of potable water for washing hard surfaces</td>
<td>Washing of boats is also included in the prohibition.</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Other - Prohibit vehicle washing except at facilities using recycled or recirculating water</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Other</td>
<td>Gyms, pools, and other businesses providing showers must post drought notices and promote limitation of shower use.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Restrict or prohibit runoff from landscape irrigation</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Limit landscape irrigation to specific times</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Limit landscape irrigation to specific days</td>
<td>Landscape irrigation is limited to no more than one (1) day per week.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Other landscape restriction or prohibition</td>
<td>Irrigation of turf or ornamental landscapes during and forty-eight hours following measurable rainfall is prohibited.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Other landscape restriction or prohibition</td>
<td>Irrigation of ornamental turf on public street medians is prohibited.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Other landscape restriction or prohibition</td>
<td>Irrigation of landscapes outside newly constructed homes and buildings that is not delivered by drip or micro-spray systems is prohibited.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>CII - Lodging establishment must offer opt out of linen service</td>
<td>Lodging establishments must also maintain and prominently display notice of opt-out of daily laundered linen service signage in each guest room.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>CII - Restaurants may only serve water upon request</td>
<td>Restaurants must maintain table signage indicating that water is only provided upon request and shall only be served upon request.</td>
<td>Yes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>CII - Commercial kitchens required to use pre-rinse spray valves</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>CII - Other CII restriction or prohibition</td>
<td>CII facilities with independent non-District source of water supply shall limit outdoor irrigation to not more than one (1) day per week.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Water Features - Restrict water use for decorative water features, such as fountains</td>
<td>Non-recirculating fountains prohibited</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Pools and Spas - Require covers for pools and spas</td>
<td>Or approved equivalent</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Pools - Allow filling of swimming pools only when an appropriate cover is in place.</td>
<td>Or approved equivalent</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other - Customers must repair leaks, breaks, and malfunctions in a timely manner</td>
<td>Repairs must be made within forty-eight (48) hours of notification.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other - Require automatic shut of hoses</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other - Prohibit use of potable water for washing hard surfaces</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other - Prohibit vehicle washing except at facilities using recycled or recirculating water</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other</td>
<td>Gyms, pools, and other businesses providing showers must post drought notices and promote limitation of shower use.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other</td>
<td>Use of District water for public outdoor showers is prohibited unless approved by the District</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other</td>
<td>Use of District water for recreational purposes is prohibited unless approved by the District</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Prohibit certain types of landscape irrigation</td>
<td>Prohibit watering of turf</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Landscape - Prohibit all landscape irrigation</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Other</td>
<td>Consider a moratorium of new meters.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
Table 8-3 Retail Only:
Stages of Water Shortage Contingency Plan - Consumption Reduction Methods

<table>
<thead>
<tr>
<th>Stage</th>
<th>Consumption Reduction Methods by Water Supplier</th>
<th>Additional Explanation or Reference (optional)</th>
</tr>
</thead>
</table>
| Drop down list
These are the only categories that will be accepted by the WUEdata online submittal tool | | |

Add additional rows as needed

<table>
<thead>
<tr>
<th>Stage</th>
<th>Consumption Reduction Methods by Water Supplier</th>
<th>Additional Explanation or Reference (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expand Public Information Campaign</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Offer Water Use Surveys</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Provide Rebates on Plumbing Fixtures and Devices</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Provide Rebates for Landscape Irrigation Efficiency</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Provide Rebates for Turf Replacement</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Other</td>
<td>Voluntary customer reduction of 15%</td>
</tr>
<tr>
<td>2</td>
<td>Expand Public Information Campaign</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Offer Water Use Surveys</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Provide Rebates on Plumbing Fixtures and Devices</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Provide Rebates for Landscape Irrigation Efficiency</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Provide Rebates for Turf Replacement</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Other</td>
<td>Mandatory customer reduction of 25%</td>
</tr>
<tr>
<td>3</td>
<td>Expand Public Information Campaign</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Offer Water Use Surveys</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Provide Rebates on Plumbing Fixtures and Devices</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Provide Rebates for Landscape Irrigation Efficiency</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Provide Rebates for Turf Replacement</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reduce System Water Loss</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Moratorium or Net Zero Demand Increase on New Connections</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Implement or Modify Drought Rate Structure or Surcharge</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Other</td>
<td>Mandatory customer reduction of 50%</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
Table 8-4 Retail: Minimum Supply Next Three Years

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Water Supply</td>
<td>6,100</td>
<td>6,070</td>
<td>5,420</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016 SWRCB 'stress test'
<table>
<thead>
<tr>
<th>City Name</th>
<th>60 Day Notice</th>
<th>Notice of Public Hearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpinteria</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>County Name</td>
<td>60 Day Notice</td>
<td>Notice of Public Hearing</td>
</tr>
<tr>
<td>Drop Down List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>County</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTES: CVWD, 2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix E

DWR SBX 7-7 Tables
<table>
<thead>
<tr>
<th>Units of Measure Used in UWMP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(select one from the drop down list)</td>
</tr>
<tr>
<td>Acre Feet</td>
</tr>
</tbody>
</table>

The unit of measure must be consistent with Table 2-3

NOTES: CVWD, 2016
<table>
<thead>
<tr>
<th>Baseline</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10- to 15-year baseline period</td>
<td>2008 total water deliveries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008 total volume of delivered recycled water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008 recycled water as a percent of total deliveries</td>
<td></td>
<td>Percent</td>
</tr>
<tr>
<td></td>
<td>Number of years in baseline period(^1,(^2)</td>
<td>10</td>
<td>Years</td>
</tr>
<tr>
<td></td>
<td>Year beginning baseline period range</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year ending baseline period range(^3)</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>5-year baseline period</td>
<td>Number of years in baseline period</td>
<td>5</td>
<td>Years</td>
</tr>
<tr>
<td></td>
<td>Year beginning baseline period range</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year ending baseline period range(^4)</td>
<td>2007</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) If the 2008 recycled water percent is less than 10 percent, then the first baseline period is a continuous 10-year period. If the amount of recycled water delivered in 2008 is 10 percent or greater, the first baseline period is a continuous 10- to 15-year period.

\(^2\) The Water Code requires that the baseline period is between 10 and 15 years. However, DWR recognizes that some water suppliers may not have the minimum 10 years of baseline data.

\(^3\) The ending year must be between December 31, 2004 and December 31, 2010.

\(^4\) The ending year must be between December 31, 2007 and December 31, 2010.

NOTES: CVWD, 2016
<table>
<thead>
<tr>
<th>Method Used to Determine Population (may check more than one)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Department of Finance (DOF)</td>
</tr>
<tr>
<td>DOF Table E-8 (1990 - 2000) and (2000-2010) and</td>
</tr>
<tr>
<td>DOF Table E-5 (2011 - 2015) when available</td>
</tr>
<tr>
<td>2. Persons-per-Connection Method</td>
</tr>
<tr>
<td>3. DWR Population Tool</td>
</tr>
<tr>
<td>4. Other</td>
</tr>
<tr>
<td>DWR recommends pre-review</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>2001</td>
</tr>
<tr>
<td>Year 2</td>
<td>2002</td>
</tr>
<tr>
<td>Year 3</td>
<td>2003</td>
</tr>
<tr>
<td>Year 4</td>
<td>2004</td>
</tr>
<tr>
<td>Year 5</td>
<td>2005</td>
</tr>
<tr>
<td>Year 6</td>
<td>2006</td>
</tr>
<tr>
<td>Year 7</td>
<td>2007</td>
</tr>
<tr>
<td>Year 8</td>
<td>2008</td>
</tr>
<tr>
<td>Year 9</td>
<td>2009</td>
</tr>
<tr>
<td>Year 10</td>
<td>2010</td>
</tr>
<tr>
<td>Year 11</td>
<td>2011</td>
</tr>
<tr>
<td>Year 12</td>
<td>2012</td>
</tr>
<tr>
<td>Year 13</td>
<td>2013</td>
</tr>
<tr>
<td>Year 14</td>
<td>2014</td>
</tr>
<tr>
<td>Year 15</td>
<td>2015</td>
</tr>
<tr>
<td>5 Year Baseline Population</td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2003</td>
</tr>
<tr>
<td>Year 2</td>
<td>2004</td>
</tr>
<tr>
<td>Year 3</td>
<td>2005</td>
</tr>
<tr>
<td>Year 4</td>
<td>2006</td>
</tr>
<tr>
<td>Year 5</td>
<td>2007</td>
</tr>
<tr>
<td>2015 Compliance Year Population</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>14,993</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016
SB X7-7 Table 4: Annual Gross Water Use *

<table>
<thead>
<tr>
<th>Baseline Year</th>
<th>Volume Into Distribution System</th>
<th>Deductions</th>
<th>Process Water</th>
<th>Annual Gross Water Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exported Water</td>
<td>Change in Dist. System Storage (+/-)</td>
<td>Indirect Recycled Water</td>
<td>Water Delivered for Agricultural Use</td>
</tr>
<tr>
<td>10 to 15 Year Baseline - Gross Water Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2001</td>
<td>3,584</td>
<td>-</td>
<td>- 1,700</td>
</tr>
<tr>
<td>Year 2</td>
<td>2002</td>
<td>4,437</td>
<td>-</td>
<td>- 2,099</td>
</tr>
<tr>
<td>Year 3</td>
<td>2003</td>
<td>4,220</td>
<td>-</td>
<td>- 1,924</td>
</tr>
<tr>
<td>Year 4</td>
<td>2004</td>
<td>5,015</td>
<td>-</td>
<td>- 2,125</td>
</tr>
<tr>
<td>Year 5</td>
<td>2005</td>
<td>4,589</td>
<td>-</td>
<td>- 1,877</td>
</tr>
<tr>
<td>Year 6</td>
<td>2006</td>
<td>3,861</td>
<td>-</td>
<td>- 1,911</td>
</tr>
<tr>
<td>Year 7</td>
<td>2007</td>
<td>4,273</td>
<td>-</td>
<td>- 2,236</td>
</tr>
<tr>
<td>Year 8</td>
<td>2008</td>
<td>3,907</td>
<td>-</td>
<td>- 2,097</td>
</tr>
<tr>
<td>Year 9</td>
<td>2009</td>
<td>4,324</td>
<td>-</td>
<td>- 1,956</td>
</tr>
<tr>
<td>Year 10</td>
<td>2010</td>
<td>3,408</td>
<td>-</td>
<td>- 1,582</td>
</tr>
<tr>
<td>Year 11</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 12</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 13</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 14</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 15</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10 - 15 year baseline average gross water use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Year Baseline - Gross Water Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2003</td>
<td>4,220</td>
<td>-</td>
<td>- 1,924</td>
</tr>
<tr>
<td>Year 2</td>
<td>2004</td>
<td>5,015</td>
<td>-</td>
<td>- 2,125</td>
</tr>
<tr>
<td>Year 3</td>
<td>2005</td>
<td>4,589</td>
<td>-</td>
<td>- 1,877</td>
</tr>
<tr>
<td>Year 4</td>
<td>2006</td>
<td>3,861</td>
<td>-</td>
<td>- 1,911</td>
</tr>
<tr>
<td>Year 5</td>
<td>2007</td>
<td>4,273</td>
<td>-</td>
<td>- 2,236</td>
</tr>
<tr>
<td>5 year baseline average gross water use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015 Compliance Year - Gross Water Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>4,147</td>
<td>-</td>
<td>-</td>
<td>- 2,094</td>
</tr>
</tbody>
</table>

* NOTE that the units of measure must remain consistent throughout the UWMP, as reported in Table 2-3

NOTES: CVWD, 2016
SB X7-7 Table 4-A: Volume Entering the Distribution System(s)

Complete one table for each source.

<table>
<thead>
<tr>
<th>Name of Source</th>
<th>Lake Cachuma - Local Surface Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>This water source is:</td>
<td></td>
</tr>
<tr>
<td>☑ The supplier's own water source</td>
<td></td>
</tr>
<tr>
<td>☐ A purchased or imported source</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline Year</th>
<th>Volume Entering Distribution System</th>
<th>Meter Error Adjustment*</th>
<th>Corrected Volume Entering Distribution System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Year</td>
<td>Fm SB X7-7 Table 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 to 15 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2001</td>
<td>3,136</td>
<td>3,136</td>
</tr>
<tr>
<td>Year 2</td>
<td>2002</td>
<td>3,504</td>
<td>3,504</td>
</tr>
<tr>
<td>Year 3</td>
<td>2003</td>
<td>2,670</td>
<td>2,670</td>
</tr>
<tr>
<td>Year 4</td>
<td>2004</td>
<td>2,321</td>
<td>2,321</td>
</tr>
<tr>
<td>Year 5</td>
<td>2005</td>
<td>3,217</td>
<td>3,217</td>
</tr>
<tr>
<td>Year 6</td>
<td>2006</td>
<td>2,291</td>
<td>2,291</td>
</tr>
<tr>
<td>Year 7</td>
<td>2007</td>
<td>2,365</td>
<td>2,365</td>
</tr>
<tr>
<td>Year 8</td>
<td>2008</td>
<td>2,300</td>
<td>2,300</td>
</tr>
<tr>
<td>Year 9</td>
<td>2009</td>
<td>2,533</td>
<td>2,533</td>
</tr>
<tr>
<td>Year 10</td>
<td>2010</td>
<td>2,174</td>
<td>2,174</td>
</tr>
<tr>
<td>Year 11</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 12</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 13</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 14</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 15</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2003</td>
<td>2,670</td>
<td>2,670</td>
</tr>
<tr>
<td>Year 2</td>
<td>2004</td>
<td>2,321</td>
<td>2,321</td>
</tr>
<tr>
<td>Year 3</td>
<td>2005</td>
<td>3,217</td>
<td>3,217</td>
</tr>
<tr>
<td>Year 4</td>
<td>2006</td>
<td>2,291</td>
<td>2,291</td>
</tr>
<tr>
<td>Year 5</td>
<td>2007</td>
<td>2,365</td>
<td>2,365</td>
</tr>
<tr>
<td>2015 Compliance Year - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>468</td>
<td>-</td>
<td>468</td>
</tr>
</tbody>
</table>

* *Meter Error Adjustment - See guidance in Methodology 1, Step 3 of Methodologies Document*

NOTES: CVWD, 2016.
<table>
<thead>
<tr>
<th>Baseline Year</th>
<th>Volume Entering Distribution System</th>
<th>Meter Error Adjustment* Optional (+/-)</th>
<th>Corrected Volume Entering Distribution System</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 15 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2001</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Year 2</td>
<td>2002</td>
<td>663</td>
<td>663</td>
</tr>
<tr>
<td>Year 3</td>
<td>2003</td>
<td>446</td>
<td>446</td>
</tr>
<tr>
<td>Year 4</td>
<td>2004</td>
<td>1,264</td>
<td>1,264</td>
</tr>
<tr>
<td>Year 5</td>
<td>2005</td>
<td>879</td>
<td>879</td>
</tr>
<tr>
<td>Year 6</td>
<td>2006</td>
<td>1,142</td>
<td>1,142</td>
</tr>
<tr>
<td>Year 7</td>
<td>2007</td>
<td>1,340</td>
<td>1,340</td>
</tr>
<tr>
<td>Year 8</td>
<td>2008</td>
<td>1,074</td>
<td>1,074</td>
</tr>
<tr>
<td>Year 9</td>
<td>2009</td>
<td>1,488</td>
<td>1,488</td>
</tr>
<tr>
<td>Year 10</td>
<td>2010</td>
<td>742</td>
<td>742</td>
</tr>
<tr>
<td>Year 11</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 12</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 13</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 14</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 15</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>5 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2003</td>
<td>446</td>
<td>446</td>
</tr>
<tr>
<td>Year 2</td>
<td>2004</td>
<td>1,264</td>
<td>1,264</td>
</tr>
<tr>
<td>Year 3</td>
<td>2005</td>
<td>879</td>
<td>879</td>
</tr>
<tr>
<td>Year 4</td>
<td>2006</td>
<td>1,142</td>
<td>1,142</td>
</tr>
<tr>
<td>Year 5</td>
<td>2007</td>
<td>1,340</td>
<td>1,340</td>
</tr>
<tr>
<td>2015 Compliance Year - Water into Distribution System</td>
<td>2,943</td>
<td>2,943</td>
<td></td>
</tr>
</tbody>
</table>

* Meter Error Adjustment - See guidance in Methodology 1, Step 3 of Methodologies Document

NOTES: CVWD, 2016.
SB X7-7 Table 4-A: Volume Entering the Distribution

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume Entering Distribution System</th>
<th>Meter Error Adjustment* (Optional +/-)</th>
<th>Corrected Volume Entering Distribution System</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 15 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2001</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Year 2</td>
<td>2002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 3</td>
<td>2003</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Year 4</td>
<td>2004</td>
<td>1,101</td>
<td>1,101</td>
</tr>
<tr>
<td>Year 5</td>
<td>2005</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 6</td>
<td>2006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 7</td>
<td>2007</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Year 8</td>
<td>2008</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td>Year 9</td>
<td>2009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 10</td>
<td>2010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 11</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 12</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 13</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 14</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Year 15</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>5 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2003</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Year 2</td>
<td>2004</td>
<td>1,101</td>
<td>1,101</td>
</tr>
<tr>
<td>Year 3</td>
<td>2005</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 4</td>
<td>2006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 5</td>
<td>2007</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>2015 Compliance Year - Water into Distribution System</td>
<td>490</td>
<td>490</td>
<td></td>
</tr>
</tbody>
</table>

* Meter Error Adjustment - See guidance in Methodology 1, Step 3 of Methodologies Document

NOTES: CVWD, 2016.
SB X7-7 Table 4-A: Volume Entering the Distribution

Name of Source: State Water Project / Cachuma Exchange

This water source is:
- The supplier's own water source
- A purchased or imported source

<table>
<thead>
<tr>
<th>Baseline Year</th>
<th>Volume Entering Distribution System</th>
<th>Meter Error Adjustment* Optional (+/-)</th>
<th>Corrected Volume Entering Distribution System</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 15 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2001</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>Year 2</td>
<td>2002</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>Year 3</td>
<td>2003</td>
<td>504</td>
<td>504</td>
</tr>
<tr>
<td>Year 4</td>
<td>2004</td>
<td>329</td>
<td>329</td>
</tr>
<tr>
<td>Year 5</td>
<td>2005</td>
<td>493</td>
<td>493</td>
</tr>
<tr>
<td>Year 6</td>
<td>2006</td>
<td>428</td>
<td>428</td>
</tr>
<tr>
<td>Year 7</td>
<td>2007</td>
<td>368</td>
<td>368</td>
</tr>
<tr>
<td>Year 8</td>
<td>2008</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>Year 9</td>
<td>2009</td>
<td>303</td>
<td>303</td>
</tr>
<tr>
<td>Year 10</td>
<td>2010</td>
<td>492</td>
<td>492</td>
</tr>
<tr>
<td>Year 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 Year Baseline - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2003</td>
<td>504</td>
<td>504</td>
</tr>
<tr>
<td>Year 2</td>
<td>2004</td>
<td>329</td>
<td>329</td>
</tr>
<tr>
<td>Year 3</td>
<td>2005</td>
<td>493</td>
<td>493</td>
</tr>
<tr>
<td>Year 4</td>
<td>2006</td>
<td>428</td>
<td>428</td>
</tr>
<tr>
<td>Year 5</td>
<td>2007</td>
<td>368</td>
<td>368</td>
</tr>
<tr>
<td>2015 Compliance Year - Water into Distribution System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>246</td>
<td>246</td>
<td></td>
</tr>
</tbody>
</table>

* Meter Error Adjustment - See guidance in Methodology 1, Step 3 of Methodologies Document

NOTES:
<table>
<thead>
<tr>
<th>Baseline Year</th>
<th>Volume Discharged from Reservoir for Distribution System Delivery</th>
<th>Percent Recycled Water</th>
<th>Recycled Water Delivered to Treatment Plant</th>
<th>Transmission/Treatment Loss</th>
<th>Recycled Volume Entering Distribution System from Surface Reservoir Augmentation</th>
<th>Recycled Water Pumped by Utility*</th>
<th>Transmission/Treatment Losses</th>
<th>Recycled Volume Entering Distribution System from Groundwater Recharge</th>
<th>Total Deducible Volume of Indirect Recycled Water Entering the Distribution System</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2027</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2028</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2029</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2031</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2032</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2033</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2034</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2036</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2037</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2038</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2039</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2040</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2041</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2042</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2043</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2044</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2045</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: CVWD, 2016.
Table 5: Gallons Per Capita Per Day (GPCD)

<table>
<thead>
<tr>
<th>Baseline Year</th>
<th>Service Area Population Fm SB X7-7 Table 3</th>
<th>Annual Gross Water Use Fm SB X7-7 Table 4</th>
<th>Daily Per Capita Water Use (GPCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 15 Year Baseline GPCD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>2001</td>
<td>16,115</td>
<td>1,884</td>
</tr>
<tr>
<td>Year 2</td>
<td>2002</td>
<td>15,975</td>
<td>2,338</td>
</tr>
<tr>
<td>Year 3</td>
<td>2003</td>
<td>15,844</td>
<td>2,296</td>
</tr>
<tr>
<td>Year 4</td>
<td>2004</td>
<td>15,708</td>
<td>2,890</td>
</tr>
<tr>
<td>Year 5</td>
<td>2005</td>
<td>15,557</td>
<td>2,712</td>
</tr>
<tr>
<td>Year 6</td>
<td>2006</td>
<td>15,476</td>
<td>1,950</td>
</tr>
<tr>
<td>Year 7</td>
<td>2007</td>
<td>15,393</td>
<td>2,037</td>
</tr>
<tr>
<td>Year 8</td>
<td>2008</td>
<td>15,308</td>
<td>1,810</td>
</tr>
<tr>
<td>Year 9</td>
<td>2009</td>
<td>15,221</td>
<td>2,368</td>
</tr>
<tr>
<td>Year 10</td>
<td>2010</td>
<td>15,143</td>
<td>1,826</td>
</tr>
<tr>
<td>Year 11</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 12</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 13</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 14</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year 15</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

10-15 Year Average Baseline GPCD

| Year 10-15 Average Baseline GPCD | 127 |

5 Year Baseline GPCD

<table>
<thead>
<tr>
<th>Baseline Year</th>
<th>Service Area Population Fm SB X7-7 Table 3</th>
<th>Gross Water Use Fm SB X7-7 Table 4</th>
<th>Daily Per Capita Water Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>2003</td>
<td>15,844</td>
<td>2,296</td>
</tr>
<tr>
<td>Year 2</td>
<td>2004</td>
<td>15,708</td>
<td>2,890</td>
</tr>
<tr>
<td>Year 3</td>
<td>2005</td>
<td>15,557</td>
<td>2,712</td>
</tr>
<tr>
<td>Year 4</td>
<td>2006</td>
<td>15,476</td>
<td>1,950</td>
</tr>
<tr>
<td>Year 5</td>
<td>2007</td>
<td>15,393</td>
<td>2,037</td>
</tr>
</tbody>
</table>

5 Year Average Baseline GPCD

| Year 5 Average Baseline GPCD | 136 |

2015 Compliance Year GPCD

| Year 2015 | 14,993 | 2,053 | 122 |

NOTES: CVWD, 2016.
<table>
<thead>
<tr>
<th>Summary From Table SB X7-7 Table 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-15 Year Baseline GPCD</td>
</tr>
<tr>
<td>5 Year Baseline GPCD</td>
</tr>
<tr>
<td>2015 Compliance Year GPCD</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016.
SB X7-7 Table 7-A: Target Method 1

20% Reduction

<table>
<thead>
<tr>
<th></th>
<th>10-15 Year Baseline GPCD</th>
<th>2020 Target GPCD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>127</td>
<td>101</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016.
<table>
<thead>
<tr>
<th>Agency May Select More Than One as Applicable</th>
<th>Percentage of Service Area in This Hydrological Region</th>
<th>Hydrologic Region</th>
<th>"2020 Plan" Regional Targets</th>
<th>Method 3 Regional Targets (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>North Coast</td>
<td>137</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>North Lahontan</td>
<td>173</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>Sacramento River</td>
<td>176</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>San Francisco Bay</td>
<td>131</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>San Joaquin River</td>
<td>174</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>100% Central Coast</td>
<td>123</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>Tulare Lake</td>
<td>188</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>South Lahontan</td>
<td>170</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>South Coast</td>
<td>149</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>Colorado River</td>
<td>211</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Target
(If more than one region is selected, this value is calculated.)

117

NOTES: CVWD, 2016.
SB X7-7 Table 7-F: Confirm Minimum Reduction for 2020 Target

<table>
<thead>
<tr>
<th>5 Year Baseline GPCD From SB X7-7 Table 5</th>
<th>Maximum 2020 Target(^1)</th>
<th>Calculated 2020 Target(^2)</th>
<th>Confirmed 2020 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>129</td>
<td>117</td>
<td>117</td>
</tr>
</tbody>
</table>

\(^1\) Maximum 2020 Target is 95% of the 5 Year Baseline GPCD

\(^2\) 2020 Target is calculated based on the selected Target Method, see SB X7-7 Table 7 and corresponding tables for agency's calculated target.

NOTES: CVWD, 2016. Calculated 2020 Target based on 95% of Regional Target (see Table 7-E).
SB X7-7 Table 8: 2015 Interim Target GPCD

<table>
<thead>
<tr>
<th>Confirmed 2020 Target Fm SB X7-7 Table 7-F</th>
<th>10-15 year Baseline GPCD Fm SB X7-7 Table 5</th>
<th>2015 Interim Target GPCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>127</td>
<td>122</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016.
<table>
<thead>
<tr>
<th>Actual 2015 GPCD</th>
<th>2015 Interim Target GPCD</th>
<th>Optional Adjustments (in GPCD)</th>
<th>2015 GPCD Achieve Targeted Reduction for 2015?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter "0" if Adjustment Not Used</td>
<td>TOTAL Adjustments</td>
<td>Adjusted 2015 GPCD</td>
</tr>
<tr>
<td>122</td>
<td>-</td>
<td>-</td>
<td>122</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016.
Appendix F

Groundwater Management Plan
Groundwater Management Plan

Carpinteria Valley Water District

August 14, 1996

Adopted and approved by the Board of Directors of the Carpinteria Valley Water District at a regular Board meeting held on August 14, 1996, by Resolution No. 670

Charles B. Hamilton, Secretary
Table of Contents

Introduction 3

Description of the Groundwater Basin 4

Estimated Storage 4
Historical Monitoring and Reports 4
Historical Variations in Groundwater Levels 5
Historical Variations in Groundwater Pumpage 5
Water Quality 6

Action Elements 6

Inventory of Wells 6
Monitoring of Groundwater Levels and Quality 7
Creation of a Database and Reporting System 7
Identification and Monitoring of Recharge Areas 8
Implementation of a Sanitary Seal Retrofit Program 8
Implementation of a Well Abandonment and Destruction Program 9
Dissemination of Public Information Relative to the Plan 9
Procedure for Changes to Plan 9

Figure 1 Map of Carpinteria Groundwater Basin 10

Exhibit A State Water Code Section 13050
Exhibit B Santa Barbara County Ordinance No. 3458
Exhibit C Water Well Standards: State of California Bulletin 74-81 (excerpts)
Exhibit D California Well Standards Bulletin 74-90 (excerpts)
Introduction

Assembly Bill 3030 (AB3030), passed by the California Legislature in 1992, provides for management of groundwater basins in order to maintain and protect water quality, maximize water supply, and to eliminate protracted legal battles over groundwater. The bill encourages local agencies to create and adopt groundwater management plans for their groundwater basins.

Based upon current information about the volume and quality of groundwater available in the Carpinteria Valley basin, there appears to be no compelling reason for an aggressive groundwater management effort by the Carpinteria Valley Water District (CVWD). There is, however, a clear need for the systematic monitoring and analysis of groundwater levels as well as water quality in the Carpinteria Valley. There is a growing use of the basin by private landowners as a source of irrigation water and the continuing need to maintain the basin as a major sustainable drinking water resource for all. Systematic monitoring, analysis and reporting will provide an early warning/detection system, should the growing use of the basin begin to adversely affect the basin. As a management tool, the use of such a system allows for informed decision-making relative to other possible management actions relative to other possible elements of a groundwater management plan identified in the legislation.

Responding to the AB3030 initiative, and the desire to accept the groundwater management challenge, Carpinteria Valley Water District’s Board of Directors adopted a Resolution of Intention to draft a Groundwater Management Plan on September 14, 1994.
Description of the Groundwater Basin

The Carpinteria Groundwater Basin extends from a small area located in Ventura County, east of the Santa Barbara County line, across the Carpinteria Valley, to and including the small Toro Canyon area on the west. The areal extent of the basin is about 12 square miles (Figure 1).

Estimated Storage

Geotechnical Consultants, Inc. (GCI) estimated in 1986 that of the total basin storage, 700,000 acre feet, about 27%, or 170,000 acre feet is located in Storage Unit No. 1, in four major aquifers within the area of confined groundwater. Safe yield of the basin is estimated to be about 5,000 acre feet (GCI, 1986).

Historical Monitoring and Reports

Collection of data and evaluation of the groundwater resources in the Carpinteria Valley area have historically been performed by the United States Geological Survey (USGS) in conjunction with the Santa Barbara County Water Agency and the Carpinteria Valley Water District (District). Data collection was begun by USGS in 1941. In 1972 the USGS monitored 19 wells. Data from the monitoring of wells were supplemented with a survey conducted in 1973 in conjunction with a test hole drilling program conducted by the District and Geotechnical Consultants, Inc. Reports on the hydrogeology and surface water hydrology of the basin were published by the USGS in 1949, 1951 and 1962. Detailed hydrogeologic investigation reports were prepared by Geotech Consultants, Inc. in 1972, 1976 and 1986. A detailed description of the basin with an emphasis on aquifer characteristics and well yields was also prepared by Richard Slade in 1975. Limited water quality data was available for about 25% of the wells in the basin in 1976, as is the case in 1996.
Rain gauges within the Carpinteria Valley have been maintained since 1941 at the Middle School and at the Carpinteria Reservoir since 1957. The USGS has collected data on streamflow measurements on Carpinteria Creek since 1941.

Since 1976 the District and the USGS have had a cooperative agreement providing for groundwater level measurements and other water quality data from 41 wells in the Valley. The agreement also provides for continued operation and maintenance of the stream gauging station for Carpinteria Creek.

Historical Variations in Groundwater Levels

At the time of the District's formation in 1941, groundwater levels were declining. Hydrographs for the basin indicate that from 1947 to 1951, prior to the importation of surface water from Lake Cachuma, groundwater levels fell below sea level. Hydrographs since 1951 show rising water levels leading up to artesian conditions in 1979. Since the 1986-91 drought, when levels declined as well production increased, water levels have nearly returned to the historic high level brought about the very wet winter of 1983.

Historical Variations in Groundwater Pumpage

Groundwater pumpage has varied greatly over the last 60 years depending upon the availability of surface water, precipitation and land use. Both irrigation acreage and total pumpage doubled after World War II. Following the introduction of Cachuma Project water in the early 50's, pumpage declined. Toward the end of the most recent 1987-91 drought, as many as 60 additional private wells were drilled, bringing the total number of private wells to about 100. Estimated private pumpage that once averaged about 1,600 acre feet/year, reached a new high in 1994 of 2,780 acre feet. District pumping historically averaged about 2,200 acre feet/year, but in 1994 totaled 1,305 acre feet. Total 1994 pumpage (District and private) was 4085 acre feet, or about 82% of the conservatively estimated 5,000 acre feet safe yield of the basin.
Water Quality

There are no known contamination problems in the Carpinteria Valley groundwater basin. Chloride, a common sea water constituent, is generally low in samples taken from the basin. Total Dissolved Solids (TDS) concentrations range from a low 450 to moderate 980 PPM. It is believed that the Rincon Thrust fault acts as a barrier to sea water intrusion.

Action Elements

1. Inventory of Wells

The profile of each drilled well in the Plan area shall include the following:

a. Location
b. Size of well casing (diameter)
c. Size of pump (horsepower)
d. Depth
e. Sanitary seal: yes / no depth
f. Meter: yes / no
g. Active / inactive / abandoned / destroyed
h. Secured: yes / no
i. Other data if available: drillers log, electric log, chemical analysis, etc.

Note: This information will be treated as confidential information in the same way that customer account information is treated and released only with written permission of the well owners.

Groundwater levels shall be measured (frequency to be determined), and aquifer characteristics calculated annually, in conjunction with the USGS. The scope of this effort will be expanded as needed to encompass the whole basin.

Annually, wells (number to be determined) shall be sampled for nitrate, chloride, total dissolved solids (TDS), and boron. A second sample (number to be determined) of wells shall be tested for general mineral and inorganic characteristics. A third sample (number to be determined) of wells shall be tested on an "as needed" basis for trace contaminants such as VOCs (volatile organic chemicals). Frequency of sampling for water quality may increase if a problem is identified. It is anticipated that water quality information produced by the private pumpers will also be shared with the District.

Note: Participation in this effort by well owners, whether solely by providing the District with well information (Element 1), or by allowing sampling and water level measurements (Element 2), or both, is entirely voluntary. Results of District water quality testing and water level measurements will be shared with well owners. Water quality testing by the District may result in benefits to all well owners through pooled purchasing power, and this opportunity will be explored.

3. Creation of a Database and Reporting System.

All water level and water quality information shall be obtained and correlated by the District. The District will prepare an annual summary report of the data and findings, entitled Carpinteria Valley Groundwater Basin Report.
4. Identification and Monitoring of Recharge Areas

In monitoring recharge areas, the Manager will include in the annual Basin Report, a status report on recharge areas in the watershed. The status report will identify the major recharge areas of the watershed and identify significant potential and/or actual threats caused by pollution or reduction of recharge area.

5. Implementation of a Sanitary Seal Retrofit Program

Wells identified as being contaminated or polluted, or subject to a material or substantial contamination or pollution risk (in accordance with the definitions of contamination and pollution provided in State Water Code Section 13050, attached as Exhibit A) and identified as not having a sanitary seal, shall be fitted with sanitary seals or remedied by other actions as determined by the District, at the owners expense, in accordance with State and County standards, incorporated in this Plan as Exhibit B, County Ordinance No. 3458, Exhibit C, Water Well Standards: State of California Bulletin 74-81, and Exhibit D, California Well Standards Bulletin 74-90.

Examples of a “material or substantial risk” would include but not be limited to the following:

1) a septic tank in close proximity to a well
2) storage of hazardous materials in close proximity to a well
3) a well located within a drainage channel or in a floodplain
4) a leach field in close proximity to a well
5) a horse or other livestock corral in close proximity to a well.
6. Implementation of a Well Abandonment and Destruction Program

All abandoned and/or improperly secured wells shall be identified and at the owner’s expense, abandoned and secured in accordance with current State and County requirements, attached as Exhibits B, C and D.

All wells that need to be destroyed shall be identified and at the owner’s expense, destroyed in accordance with current State and County requirements attached as Exhibits B, C and D.

7. Dissemination of Public Information Relative to the Plan

The District shall prepare a well owners handbook, including information and regulations about well drilling, the dangers of open and/or improperly secured wells, and well abandonment and destruction procedures.

8. Procedure for Changes in Plan

Material or substantial changes to the Board approved Plan will necessitate a complete review and public participation process as set forth in AB3030.
CARPINTERIA
GROUND WATER BASIN BOUND.

BOUNDARY BETWEEN AREA OF
AND CONFINED GROUND WATER

GEOTECH CONSULTANTS, INC.

PLATE 1 AREA OF RECHARGE
V85037 JULY, 1986
Chapter 1

POLICY

Law Review Commentaries

§ 13000. Conservation, control, and utilization of water resources; quality; statewide program; regional administration

Cross References

Hazardous substance release sites, revision of investigation and cleanup policies, see Health and Safety Code. § 25355.7.

Law Review Commentaries

Notes of Decisions

Construction with other law 9
9. Construction with other law.

Existence of substantial statutory law applicable to predecessors' contamination of property through unlawful hazardous discharges did not bar subsequent owner from advancing common-law claims of nuisance, trespass, and negligence. Newhall Land and Farming Co. v. Superior Court (Mobil Oil Corp.) (App. 5 Dist. 1985) 23 Cal.Rptr. 2d 377, 19 Cal.App.4th 334, review denied.

§ 13001. Legislative intent

Water erosion 2
2. Water erosion

Although initial study found that housing development project, as proposed, would increase water erosion, city, as lead agency under California Environmental Quality Act (CEQA), was not required to send proposed negative declaration to regional water quality control board; although state Water Quality Control Board and various regional boards had statutory jurisdiction over water quality, they had no particular authority over water erosion. Gentry v. City of Murrieta (McMillin Communities) (App. 4 Dist. 1995) 43 Cal.Rptr. 2d 170, 36 Cal.App.4th 1359, modified on denial of rehearing.

Chapter 1.5

SHORT TITLE

§ 13020. Title of division

Law Review Commentaries

Chapter 2

DEFINITIONS

Section

13050. Definitions.
§ 13050. Definitions

As used in this division:

(a) "State board" means the State Water Resources Control Board.

(b) "Regional board" means any California regional water quality control board for a region as specified in Section 13200.

(c) "Person" includes any city, county, district, the state, and the United States, to the extent authorized by federal law.

(d) "Waste" includes sewage and any and all other waste substances, liquid, solid, gaseous, or radioactive, associated with human habitation, or of human or animal origin, or from any producing, manufacturing, or processing operation, including waste placed within containers of whatever nature prior to, and for purposes of, disposal.

(e) "Waters of the state" means any surface water or groundwater, including saline waters, within the boundaries of the state.

(f) "Beneficial uses" of the waters of the state that may be protected against quality degradation include, but are not limited to, domestic, municipal, agricultural and industrial supply; power generation; recreation; aesthetic enjoyment; navigation; and preservation and enhancement of fish, wildlife, and other aquatic resources or preserves.

(g) "Quality of the water" refers to chemical, physical, biological, bacteriological, radiological, and other properties and characteristics of water which affect its use.

(h) "Water quality objectives" means the limits or levels of water quality constituents or characteristics which are established for the reasonable protection of beneficial uses of water or the prevention of nuisance within a specific area.

(i) "Water quality control" means the regulation of any activity or factor which may affect the quality of the waters of the state and includes the prevention and correction of water pollution and nuisance.

(j) "Water quality control plan" consists of a designation or establishment for the waters within a specified area of all of the following:

(1) Beneficial uses to be protected.

(2) Water quality objectives.

(3) A program of implementation needed for achieving water quality objectives.

(k) "Contamination" means an impairment of the quality of the waters of the state by waste to a degree which creates a hazard to public health through poisoning or through the spread of disease. "Contamination" includes any equivalent effect resulting from the disposal of waste, whether or not waters of the state are affected.

(l) (1) "Pollution" means an alteration of the quality of the waters of the state by waste to a degree which unreasonably affects either of the following:

(A) The waters for beneficial uses.

(B) Facilities which serve these beneficial uses.

(2) "Pollution" may include "contamination."

(m) "Nuisance" means anything which meets all of the following requirements:

(1) Is injurious to health, or is indecent or offensive to the senses, or an obstruction to the free use of property, so as to interfere with the comfortable enjoyment of life or property.

(2) Affects at the same time an entire community or neighborhood, or any considerable number of persons, although the extent of the annoyance or damage inflicted upon individuals may be unequal.

(3) Occurs during, or as a result of, the treatment or disposal of wastes.

(n) "Recycled water" means water which, as a result of treatment of waste, is suitable for a direct beneficial use or a controlled use that would not otherwise occur and is therefore considered a valuable resource.

(o) "Citizen or domiciliary" of the state includes any foreign corporation having substantial business contacts in the state or which is subject to service of process in this state.

(p)(1) "Hazardous substance" means either of the following:

Additions or changes indicated by underline; deletions by asterisks **
(A) For discharge to surface waters, any substance determined to be a hazardous substance pursuant to Section 311(b)(2) of the Federal Water Pollution Control Act (33 U.S.C. Sec. 1251 et seq.).

(B) For discharge to groundwater, any substance listed as a hazardous waste or hazardous material pursuant to Section 25140 of the Health and Safety Code, without regard to whether the substance is intended to be used, reused, or discarded, except that "hazardous substance" does not include any substance excluded from Section 311(b)(2) of the Federal Water Pollution Control Act because it is within the scope of Section 311(a)(1) of that act.

(2) "Hazardous substance" does not include any of the following:

(A) Nontoxic, nonflammable, and noncorrosive stormwater runoff drained from underground vaults, chambers, or manholes into gutters or storm sewers.

(B) Any pesticide which is applied for agricultural purposes or is applied in accordance with a cooperative agreement authorized by Section 2426 of the Health and Safety Code, and is not discharged accidentally or for purposes of disposal, the application of which is in compliance with all applicable state and federal laws and regulations.

(C) Any discharge to surface water of a quantity less than a reportable quantity as determined by regulations issued pursuant to Section 311(b)(4) of the Federal Water Pollution Control Act.

(D) Any discharge to land which results, or probably will result, in a discharge to groundwater if the amount of the discharge to land is less than a reportable quantity, as determined by regulations adopted pursuant to Section 13271, for substances listed as hazardous pursuant to Section 25140 of the Health and Safety Code. No discharge shall be deemed a discharge of a reportable quantity until regulations set a reportable quantity for the substance discharged.

(q)(1) "Mining waste" means all solid, semisolid, and liquid waste materials from the extraction, beneficiation, and processing of ores and minerals. Mining waste includes, but is not limited to, soil, waste rock, and overburden, as defined in Section 2732 of the Public Resources Code, and tailings, slag, and other processed waste materials, including cementitious materials that are managed at the cement manufacturing facility where the materials were generated.

(2) For the purposes of this subdivision, "cementitious material" means cement, cement kiln dust, clinker, and clinker dust.

(r) "Master recycling permit" means a permit issued to a supplier or a distributor, or both, of recycled water, that includes waste discharge requirements prescribed pursuant to Section 13263, and water recycling requirements prescribed pursuant to Section 13523.1.

(Amended by Stats.1992, c. 211 (A.B.3012), § 1; Stats.1995, c. 28 (A.B.1247), § 17; Stats.1995, c. 847 (S.B.206), § 2.)

Historical and Statutory Notes

1995 Legislation
Section affected by two or more acts at the same session of the legislature, see Government Code § 9605.

Cross References

Pipes carrying reclaimed water, special markings, reclaimed water defined, see Health and Safety Code § 116815.

Law Review Commentaries

Notes of Decisions

Nuisance 8

4. Mining waste

5. Silt or sediment

8. Nuisance
Pollution of water constitutes public nuisance, and water pollution occurring as result of unlawful treatment or discharge of wastes is public nuisance per se. Newhall
Chapter 3

STATE WATER QUALITY CONTROL

Article 1

STATE WATER RESOURCES CONTROL BOARD

§ 13100. Creation of state and regional boards; duties of state board

Federal Environmental Laws

Water resources research, 42 U.S.C.A. §§ 10301 to 10309.

Article 3

STATE POLICY FOR WATER QUALITY CONTROL

Section

13142. Principles and guidelines.
13142.5. Coastal marine environment.

§ 13140. Adoption of statewide policy for water quality control

Law Review Commentary

§ 13142. Principles and guidelines

State policy for water quality control shall consist of all or any of the following:

(a) Water quality principles and guidelines for long-range resource planning, including ground water and surface water management programs and control and use of recycled water.

(b) Water quality objectives at key locations for planning and operation of water resource development projects and for water quality control activities.

(c) Other principles and guidelines deemed essential by the state board for water quality control.

The principles, guidelines, and objectives shall be consistent with the state goal of providing a decent home and suitable living environment for every Californian.

(Amended by Stats. 1995, c. 28 (A.B.1247), § 18.)

§ 13142.5. Coastal marine environment

In addition to any other policies established pursuant to this division, the policies of the state with respect to water quality as it relates to the coastal marine environment are that:

(a) Wastewater discharges shall be treated to protect present and future beneficial uses, and, where feasible, to restore past beneficial uses of the receiving waters. Highest priority shall be given to improving or eliminating discharges that adversely affect any of the following:

(1) Wetlands, estuaries, and other biologically sensitive sites.

(2) Areas important for water contact sports.

Additions or changes indicated by underline: deletions by asterisks. **
AN ORDINANCE REGULATING THE CONSTRUCTION, MODIFICATION OR REPAIR, DESTRUCTION AND INACTIVATION OF WELLS WITHIN THE UNINCORPORATED AREA OF THE COUNTY OF SANTA BARBARA BY MODIFYING CERTAIN PROVISIONS OF CHAPTER 34A OF THE COUNTY CODE AND ADOPTING BY REFERENCE THE STANDARDS CONTAINED IN BULLETIN 74-81 WATER WELL STANDARDS—STATE OF CALIFORNIA OF THE CALIFORNIA DEPARTMENT OF WATER RESOURCES.

The Board of Supervisors of the County of Santa Barbara do ordain as follows:

SECTION 1

Chapter 34A of the Santa Barbara County Code is hereby repealed and a new Chapter 34A is hereby added as follows:

SEC. 34A-1. PURPOSE

It is the purpose of this ordinance to regulate the (1) construction, (2) modification or repair, (3) destruction, (4) inactivation of wells in such a manner that the groundwater of the County will not be contaminated or polluted, and that water obtained from wells will be suitable for beneficial use and will not jeopardize the health, safety or welfare of the people of this County.

SEC. 34A-2. ACTS PROHIBITED, PERMIT REQUIRED

(a) It shall be unlawful for any person to construct, modify or repair, destroy or inactivate any well unless such person has (1) obtained a permit issued from the County for the specific work to be performed, or (2) in the case of an emergency, fully complied with the provisions of this ordinance relating to emergencies.

(b) It shall be unlawful for any person to construct, modify or repair, destroy or inactivate any well unless such construction modification or repair, destruction or inactivation is in accordance with the standards set forth in this ordinance.

SEC. 34A-3. DEFINITIONS

(a) Applicant. Applicant shall mean (1) the legal owner(s) of the property on which the well is to be constructed, modified or repaired or destroyed; or (2) that owner's agent authorized in writing to make this application; or (3) a licensed well drilling contractor who shall perform the work on the well.

(b) Contamination and Pollution. Contamination and pollution shall have the meanings ascribed to them by California Water Code, Section 13050.

(c) County. County shall mean the County of Santa Barbara, acting through its Board of Supervisors or the Santa Barbara County Health Officer, as the duly authorized representative of the Board of Supervisors.

(d) Destruction. Destruction of wells shall consist of the complete filling of the well in accordance with the procedures outlined in Bulletin 74-81, "Water Well Standards: State of California: of the California Department of Water Resources.

(e) Emergency. Emergency shall mean a circumstance which is either (1) and imminent threat of or is actually contaminating or polluting the groundwater of this County, or (2) jeopardizes the health or safety of the people of the County, or (3) will cause a substantial or immediate loss of property, crops, or livestock.

(f) Inactivate Well of Inactivation. An inactive well is one not routinely operating but capable of being made operable with a minimum of effort. It shall be considered abandoned and proper destruction required when it has not been used for a period of one year, unless the owner demonstrates his intention to use the well again. Inactivation of a well shall be accomplished by filling a permit stating the intention to reuse the well and properly maintain the well as inactive per the requirements of Bulletin 74-81.

(g) Modification or Repair. Modification or repair shall only mean the deepening of a well, reperforation, sealing or replacement of a well casing.

(h) Nuisance. Nuisance shall mean a well which threatens to or which contaminates or pollutes the groundwater of this County in such a way that it jeopardizes the health and safety of the public. A nuisance also means anything which creates and unsanitary or unsafe condition resulting from water well drilling activity.

(i) Person. Person shall mean any individual, firm, partnership, general corporation, association or governmental entity. Governmental entity, as used herein, shall not include any local agency except form the application of this ordinance pursuant to State Law.

(j) Well or Water Well. The term "well" or "water well" means any artificial excavation constructed by any method for the purpose of extracting water from, or injecting water into the ground. It shall also include "cathodic protection wells", as defined in California Water Code, Section 13711. This definition shall not include:

(1) Oil and gas wells, or geothermal wells constructed under the jurisdiction of the California State Department of Conservation, except those wells converted to use as water wells; or

(2) Wells used for the purpose of:

a) Dewatering excavation during construction, or
b) Stabilizing hillside or earth embankments.

(k) Words not otherwise defined in this ordinance shall have the meaning ascribed to them in Chapter II of the California Department of Water Resources Bulletin No. 74-81 (Water Well Standards) and Chapter II of 74-1 (Cathodic Protection Well Standards), as each may be amended.
SEC. 34-A. PERMITS
Application for the permit required by this ordinance shall be (1) made in writing to the County on such forms as may be prescribed by the County, (2) signed by the applicant, and, (3) accompanied by a fee established by this Ordinance (no part of said fee shall be refundable) and, (4) shall include but no be limited to the following:

(a) Applicant's name and address; a statement that the person drilling the well is licensed under the provisions of Chapter 9 of Division 3 of the Business and Professions Code as a well drilling contractor and such license is in full force and effect; the number of such license; or, in lieu of the two letter enumerated matters, a statement that the applicant is exempt from the provisions of Chapter 9 of Division 3 of the Business and Professions Code and the basis for the alleged exemption.

(b) Estimated or proposed depth of the well, casing material, sealing material, sealing method, use of the well, and drilling method to be used.

(c) Location of the property and well site including street address and/or Assessor's Parcel Number, and the legal owner of the property.

(d) A plot plan indicating the location of the well with respect to the following items:
 (1) Property lines.
 (2) Sewage disposal systems or works carrying or containing sewage or industrial wastes within a 200-foot radius of the proposed well.
 (3) All perennial, seasonal, natural, or artificial water bodies or watercourses, including location of 100-year floodplain, if applicable.
 (4) Drainage pattern of the property.
 (5) Existing wells within a 100 ft. radius of the proposed well.
 (6) Access roads and easements (water, sewer, utility, roadway).
 (7) Existing and/or proposed structures.
 (8) Animal or fowl enclosures, pens, paddocks, stockyards within a 100 foot radius of proposed well site.

(e) Permits shall be issued subject to the terms, conditions and standards of this ordinance and may be denied only if the specific work to be performed of construction, modification or repair, destruction or inactivation as proposed would violate the terms, conditions or standards of this Ordinance.

(f) The issuance of a permit hereunder shall be deemed to be an administrative ministerial, non-discretionary act, and if an applicant complies with the terms, conditions, and standards of this Ordinance, said permit shall be issued within five (5) working days.

(g) A permit issued for construction of a well covers the construction of one (1) completed well. If the well driller proposes to change the site of the well from that shown on the site plan of a permit, the change in site must be approved by the County prior to drilling. The County shall give approval or disapproval of the change in site within 24 hours of notification by the well driller.

(h) Every permit issued pursuant to this ordinance shall expire upon completion of the task authorized thereby; however, in any case such permit shall expire one (1) year from date of issuance.

(i) Guarantee of Performance. Prior to the issuance of a permit, the person drilling the well shall post with the County a cash deposit or bond to guarantee compliance with the terms of this Ordinance and the applicable permit. Such cash or bond to be in any amount deemed necessary by the Health Officer to include but not be limited to the remedy of improper work, but not in excess of the total estimated cost of such work. Licensed Well Drilling contractors shall not be required to post a bond or deposit guaranteeing performance. 85 percent of the deposit or bond shall be returned to the permittee when the work has been completed to the satisfaction of the Health Officer; the remaining 15 percent of the bond shall be returned after one (1) year of satisfactory well operation as determined by the Health Officer. These percentages may vary to cover special conditions and circumstances in order to guarantee performance and compliance with the Ordinance.

SEC. 34A-5. STANDARDS
Standards for construction, repair or modification, destruction or inactivation are set forth in Chapter II of the California Department of Water Resources Bulletin No. 74-81, Water Well Standards, and Bulletin 74-1, Cathodic Protection Well Standards, and are hereby adopted as a part of this Ordinance, with the following additional clarifications and requirements for well construction.

(a) Annular Space. Gravity installation of the sealant in an annular space of a well is acceptable if the interval to be sealed is dry and the interval depth is 50 feet or less. Sealant shall be pumped into the space using a tremie or grout pipe when there is water in the annulus, or the annulus exceeds 50 feet.

(b) Disinfecting Tube. Every well shall be equipped with an adequately sized opening by which disinfecting agents may be conveniently introduced directly into the well casing. This opening shall be protected against entrance of contaminants by installation of a water-tight cap or plug.

(c) Drilling Waste. Drilling waste must be controlled and may not be discharged so as to create conditions which violate Water Quality Control Board Regulations, other State Laws, Federal Regulations or Local Ordinances.

(d) Mud Chips. Mud chips created to confine drilling mud shall be maintained during the well drilling operation so as not to be a safety hazard. It shall be the well driller's responsibility to properly earthfill the mud pit(s) upon completion of the job.

(e) Set-up Time. The minimum time that must be allowed for annular seals containing Type II and III (6-sack) cement to set shall be 16 hours before construction operations on the well may be resumed. When additives to shorten setting time are used with the cement, this set-up time may be reduced to a minimum of 12 hours before air jetting, bailing, swabbing, test pumping or further construction on the well may be resumed.

(f) Log of Well. Any person who has drilled, dug, excavated or bored a well subject to this Ordinance, shall within thirty (30) days after completing of the work, furnish the County with a copy of the State driller's report. The well driller shall notify the County if submission of the log is to be delayed.

(g) Horizontal Wells. The location and design of horizontal or lateral wells shall be approved by the County on a case-by-case basis prior to approval to construct or reconstruct such wells.
(h) Administrative Variance. The Health Officer may grant an administrative variance to the provisions of this Ordinance where written evidence is submitted that a modification of the standards will not endanger the health or safety of the public and strict compliance would be unreasonable in view of all the circumstances.

SEC. 34A-7. EMERGENCY

In the event of an emergency, a person may construct, modify or repair, destroy or inactivate a well without the permit required by this Ordinance providing that (1) such work is performed in conformance with the standards set forth herein, (2) the County is notified of such emergency work by the following County working day, and (3) an application for the required permit is made within three (3) County working days after initiation of such emergency work.

SEC. 34A-7. ENFORCEMENT

(a) The County may suspend or revoke a well permit issued under the Ordinance whenever the County determines that a condition resulting from any work performed under such a permit constitutes a nuisance as defined herein, or when the applicant, his agents, employees or the licensed well drilling contractor performing the work (1) violates any provision of this ordinance or any terms and conditions of the permit or (2) misrepresents any material facts in the application for a permit.

(b) Except in emergency situations, before the County suspends or revokes a well permit, the County shall make reasonable effort to notify the applicant and the licensed well driller performing work under the permit if he is not the applicant and to provide an opportunity for each to show cause why the permit should not be suspended or revoked.

(c) Upon notification by the County that the permit is suspended or revoked, or finding that no valid permit has been issued, no further work shall be performed until such violation has been abated.

(d) Rules and Regulations. The Health Officer may adopt rules and regulations to implement and administer this Ordinance.

SEC. 34A-8. NUISANCE

Upon finding by the County that well or well drilling activity constitutes a nuisance, as defined herein, the County may take the necessary action to abate such nuisance. The property owner where the well is located and/or the person causing the nuisance thereof shall be jointly liable for the reasonable costs incurred by or at the request of the County for abatement of the nuisance.

SEC. 34A-9. APPEAL

Any person whose application for a permit has been suspended, revoked or denied or whose request for an administrative variance has been denied may appeal to the Board of Supervisors of the County of Santa Barbara in writing within ten (10) days after the notice of such suspension, revocation or denial. Said appeal shall specify the reasons therefore and shall be accompanied by a filing fee, if any, as established by the Board of Supervisors of the County of Santa Barbara. The Clerk of the Board of Supervisors shall set the appeal for the hearing and shall give notice to the appellant and the appropriate County personnel of the time and place of the hearing.

SEC. 34A-10. INSPECTION

The County shall be notified at least twenty-four (24) hours in advance to make an inspection of, 1) the sealing of the annular space on a well, 2) the destruction of wells, and 3) any other operation which may be stipulated on the permit by the County to cope with special or unusual conditions. The County shall have the right to enter upon any property at any reasonable time to make inspections and examinations for the purpose of enforcement of this Ordinance, subject to the provisions of Code of Civil Procedure Section 1822.50 et seq.

SEC. 34A-11. APPLICATION FEES

(a) Each application for a well construction or modification permit shall be accompanied by a permit fee of $155.00.

(b) Each application for a well destruction or inactivation permit shall be accompanied by a permit fee of $95.00.

(c) An additional fee of $30 per hour shall be charged to the permittee for any inspection service by the Health Officer which exceeds five (5) hours on-site for witnessing annular seals, and the abatement of nuisances or hazards resulting from the well drilling operation. These application fees may be modified by Resolution of the Board of Supervisors.

SEC. 34A-12. PENALTIES

Any person who violates any provision of this Article is guilty of a misdemeanor. Each offense shall be punishable by a fine of not less than twenty-five dollars ($25.00) or more than one thousand dollars ($1,000.00) or by imprisonment in the County jail for a term not exceeding six months, or by both such fine and imprisonment. Each day such offense continues shall constitute a separate offense.

SECTION 2

This Ordinance shall take effect and be in force at the expiration of thirty days from the date of its passage; and before the expiration of fifteen days after its passage it, or a summary of it, shall be published once, with the names and the members of the Board of Supervisors voting for and against in the Santa Barbara News Press, a newspaper of general circulation published in the County of Santa Barbara, State of California.
Department of
Water Resources
Bulletin 74-81

Water Well Standards:
State of California

December 1981

Huey D. Johnson
Secretary for Resources
The Resources Agency

Edmund G. Brown Jr.
Governor
State of California

Ronald B. Robie
Director
Department of
Water Resources
Section 5. Special Standards.

A. In locations where existing geologic or ground water conditions require standards more restrictive than those described herein, such special additional standards may be prescribed by the enforcing agency.

B. Special standards are necessary for the construction of recharge or injection wells, horizontal wells and other unusual types of wells. Design of these wells is subject to the approval of the enforcing agency.

Section 6. Well Drillers.

The construction, alteration, or destruction of wells shall be performed by contractors licensed in accordance with the provisions of the Contractors License Law (Chapter 9, Division 3, of the Business and Professions Code) unless exempted by that act.

Section 7. Reports.

Reports concerning the construction, alteration, or destruction of water wells shall be filed with the California Department of Water Resources in accordance with the provisions of Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code.

Part II. Well Construction

Section 8. Well Location with Respect to Contaminants and Pollutants.

A. All wells shall be located an adequate horizontal distance from potential sources of contamination and pollution.

1/ A program to protect underground drinking water sources from endangerment by the subsurface emplacement of fluids through well injection is required under the Federal Safe Drinking Water Act (Public Law 93–523) signed into law December 16, 1974. On June 24, 1980, the U. S. Environmental Protection Agency issued rules and regulations establishing technical criteria and standards governing the construction of injection wells. Revisions were made August 27, 1981, and October 1, 1981. These regulations are Part 146 of Title 40, Protection of Environment, of the Code of Federal Regulations (40CFR146).

3/ Such potential sources of contamination and pollution include: sewers, both sanitary and storm sewers, leaching fields (from septic tanks), sewage and industrial waste ponds, barnyard and stable areas, feedlots, solid waste disposal sites, tanks and pipelines (both above ground and buried) for storage and conveyance of petroleum products or chemicals, etc.
Most of the factors involved in determining safe distances in a particular area are usually not known. Based on past experience and general knowledge, the following horizontal distances are considered safe where dry upper unconsolidated formations, less permeable than sand, are encountered:1/2/

- Sewer, watertight septic tank, or pit privy: 50 feet (15 metres)
- Subsurface sewage leaching field: 100 feet (30 metres)
- Cesspool or seepage pit: 150 feet (45 metres)
- Animal or fowl enclosure: 100 feet (30 metres)

Where in the opinion of the enforcing agency adverse conditions exist, the above distances shall be increased or special means of protection, particularly in the construction of the well, shall be provided.

B. In addition, if possible, the well shall be located up the ground water gradient (upstream) from the specified sources of contamination. By doing so this provides assurance that potential contamination would be moving naturally away from the area of production. However, in an unconfined aquifer consideration shall also be given to the possibility of reversal of gradient near the well due to pumping (see Figure 3), the pumping of nearby wells, or general decline of the water table.3/

C. The top of the casing shall terminate above grade or above any known conditions of flooding by drainage or runoff from the surrounding land. For community water supply wells this level is defined as above the

1/ Because of the many variables involved in the determination of the safe horizontal distance of a well from potential sources of contamination and pollution, no one set of distances will be adequate and reasonable for all conditions. In areas where adverse conditions exist, the distances listed should be increased. Conversely, where especially favorable conditions exist or where special means of protection, particularly in construction of the well are provided, lesser distances may be acceptable if approved by the enforcing agency.

2/ If the well is a radial collector well, these distances apply to the furthest extended points of the well.

3/ When water is pumped from a well a drawdown "cone of depression" is formed in the water surface surrounding the well and ground water in the area of the cone flows toward the well. Similar cones formed by nearby wells can influence the shape of the cone or enlarge the area being drawn upon resulting in a change in direction of flow.
Figure 3. EFFECT OF REVERSAL OF GROUND WATER GRADIENT
"...floodplain of a 100 year flood..." or above "...any recorded high tide,...", (Section 64417, "Siting Requirements", Title 22 of the California Administrative Code).1/

In addition, the area around the well shall slope away from the well and surface drainage shall be directed away from the well.

D. Where a well is to be near a building, the well shall be far enough from the building so that the well will be accessible for repair, maintenance, etc.

Section 9. Sealing the Upper Annular Space.

The space between the well casing and the wall of the drilled hole (the annular space) shall be effectively sealed to protect it against contamination or pollution by entrance of surface and/or shallow, subsurface waters.2/

A. Minimum depth of seal below ground surface for various uses of wells:

<table>
<thead>
<tr>
<th>Types</th>
<th>Minimum Depth of Seal (below ground surface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Water Supply Wells</td>
<td>50 feet (15 metres)</td>
</tr>
<tr>
<td>Individual Domestic Wells</td>
<td>20 feet4/6 (6.1 metres)</td>
</tr>
<tr>
<td>Industrial Wells</td>
<td>50 feet4/6 (15 metres)</td>
</tr>
<tr>
<td>Agricultural Wells</td>
<td>20 feet4/6 (6.1 metres)</td>
</tr>
<tr>
<td>Air-Conditioning Wells</td>
<td>20 feet4/6 (6.1 metres)</td>
</tr>
<tr>
<td>Observation and Monitoring Wells</td>
<td>20 feet4/6 (6.1 metres)</td>
</tr>
</tbody>
</table>

1/ If compliance with this requirement for community water supply wells is not possible, the enforcing agency should be contacted regarding alternative means for protection.

2/ Annular seals are also installed to provide protection for the casing against corrosion, to assure structural integrity of the casing, and to stabilize the upper formation.

3/ In those cases where it is not possible to meet or, when necessary, increase, the lateral distances from pollution sources described in Section 8 of these standards, an alternative (or special) means of protection for the well is to increase the depth of the seal.

4/ Exceptions are shallow wells where the water to be developed is at a depth less than 20 feet (6 metres). In this instance, the depth of seal may be reduced but in no case less than 10 feet (3 metres) and special precautions taken in locating the well with respect to sources of pollution.

5/ The annular space shall be sealed to a depth of 50 feet (15 metres) from the surface when the well is close to sources of pollution listed in Section 8.

6/ Because they are constructed to measure specific conditions, the annular space in such wells is usually sealed to make the intake section "depth-discrete". Depending on the circumstances, this depth may be very shallow.
In areas\(^1\) where freezing is a potential problem, the top of the seal may be below ground surface but in no case more than 4 feet (1.2 metres) below ground surface.

B. Sealing Conditions.\(^2\) Following are requirements to be observed in sealing the annular space:

1. Wells situated in unconsolidated, caving material. An oversized hole, at least 4 inches (100 millimetres) greater in diameter than the production casing, shall be drilled and a conductor casing installed to the depth of seal specified in Part A of this section. The space between the conductor casing and the production casing shall be filled with sealing material. The conductor may be withdrawn as the sealing material is placed (see Figure 4A).

2. Wells situated in unconsolidated material stratified with significant clay layers. If a clay formation is encountered within 5 feet (1.5 metres) of the bottom of the seal described in Part A of this section, the seal should be extended 5 feet (1.5 metres) into the clay formation (thus the depth of seal could be as much as another 10 feet or 3 metres). An oversized hole at least 4 inches (100 millimetres) greater in diameter than the production casing, shall be drilled and the annular space filled with sealing material (see Figure 4B).

If caving material is present, a conductor casing shall be installed and the annular space sealed as described in 1, above.

3. Wells situated in soft consolidated formations (extensive clays, sandstones, etc.). An oversized hole, at least 4 inches (100 millimetres) greater in diameter than the production casing, shall be drilled to the depth of seal specified in Part A of this section and the space between the production casing and the drilled hole shall be filled with sealing material (see Figure 4C).

If a conductor casing is to be installed (to establish a foundation for the construction of the remainder of the well) the oversized hole shall be at least 4 inches (100 millimetres) greater in diameter than the conductor

\(^1\) Defined here as those areas in which the mean length of freeze-free period as described by the National Weather Service is less than 100 days, i.e., temperatures at or below 32°F (0°C) are likely to occur on any day during a period of 265 or more days each year. In general geographic terms, these areas are the northeastern part of the State (parts of Modoc, Lassen, and Siskiyou Counties), the north Lahontan area (essentially the eastern slopes of the Sierra Nevada and subsidiary valleys north of Mount Whitney and Mono Lake) and at Lake Arrowhead in the San Bernardino Mountains.

\(^2\) Methods of sealing are described in Appendix B.
Figure 4. Sealing Conditions for Upper Annular Space—Unconsolidated and Soft, Consolidated Formations
casing and the annular space between the conductor casing and the drilled hole filled with sealing material to the depth specified in Part A of this section.

4. Wells situated in "hard" consolidated formations (crystalline or metamorphic rock). An oversized hole shall be drilled to the depth specified in Part A of this section and the annular space filled with sealing material. If there is significant overburden, a conductor casing may be installed to retain it. If the material is heavily fractured, the seal should extend into solid material. If the well is to be open-bottomed (lower section uncased), the casing shall be seated in the sealing material (see Figure 5A).

5. Gravel packed wells.

a. With conductor casing. An oversized hole, at least 4 inches (100 millimetres) greater than the diameter of the conductor casing, shall be drilled to the depth specified in Part A of this section and the annular space between the conductor casing and drilled hole filled with sealing material. (In this case the gravel pack may extend to the top of the well but to prevent contamination by surface drainage, a welded cover shall be installed over the top in the space between the conductor casing and the production casing, see Figure 5B).

b. Without conductor casing. An oversized hole at least 4 inches (100 millimetres) greater in diameter than the production casing, shall be drilled to the depth specified in Part A of this section and the annular space between the casing and drilled hole filled with sealing material. If gravel fill pipes are installed through the seal, the annular seal shall be of sufficient thickness to assure that there is a minimum of 2 inches (50 millimetres) between the gravel fill pipe and the wall of the drilled hole. The gravel pack shall terminate at the base of the seal (see Figure 5C). If a temporary conductor casing is used, it shall be removed as the sealing material is placed.

6. For wells situated in circumstances differing from those described above, the sealing conditions shall be as prescribed by the enforcing agency.

7. Converted wells. Wells converted from one use to another, particularly those constructed in prior years without annular seals, shall have annular seals installed to the depth required in Part A of this section and at the thickness described in Part E. Where it is anticipated that a well will be converted to another use, the enforcing agency may require the installation of a seal to the depth specified for community water supply wells.1/

1/ This statement presumes that land use planning has taken place and that zoning requirements are in effect.
Figure 5. SEALING CONDITIONS FOR UPPER ANNULAR SPACE-
HARD ROCK FORMATIONS AND GRAVEL PACKED WELLS
C. Conductor Casing. For community water supply wells, the minimum thickness of steel conductor casing shall be 1/4 inch (6 millimetres) for single casing or a minimum of No. 10 U. S. Standard Gage for double casing. Steel used for conductor casing shall conform to the specifications for steel casing described in Section 12.

D. Sealing Material. The sealing material shall consist of neat cement grout, sand-cement grout, bentonite clay, or concrete. Cement used for sealing mixtures shall meet the requirements, including the latest revision thereof, of ASTM C150 "Standard Specification for Portland Cement" types I (common construction cement) III (high early strength) and V (for high sulfate resistance, i.e., corrosive waters). Water used for sealing mixtures shall be clean and of a potable quality. Materials used as additives for Portland cement mixtures in the field shall meet the requirements, and latest revision thereof, of ASTM C494 "Standard Specification for Chemical Admixtures for Concrete".

1. Neat cement grout shall be composed of one sack of Portland cement (94 pounds or 43 kilograms) to 4-1/2 to 6-1/2 (depending on cement type and additives used) gallons (17 to 25 litres) of clean water.

2. Sand-cement grout shall be composed of not more than two parts by weight of sand and one part of Portland cement to 4-1/2 to 6-1/2 (depending on cement type and additives used) gallons (17 to 25 litres) of clean water per sack of cement.

3. Concrete used shall be "Class A" (6 sacks of Portland cement per cubic yard or 0.76 cubic metre) or "Class B" (5 sacks per cubic yard or 0.76 cubic metre). Aggregates shall meet the requirements, including the latest revision thereof, of ASTM C33 "Standard Specification for Concrete Aggregates".

4. Special quick-setting cement, retardants to setting, and other additives, including hydrated lime to make the mix more fluid (up to 10 percent of the volume of cement), and bentonite (up to 5 percent) to make the mix more fluid and to reduce shrinkage, may be used.

1/ American Society for Testing and Materials.
2/ Corresponding API (American Petroleum Institute) cement classes are: Type I - API Class A, Type III - API Class C.
3/ Concrete is useful in sealing large-diameter wells where the volume of annular seals required is likely to be substantial. However, unless care is exercised during placement, the coarse aggregate may become separated from the cement.
4/ A popular concrete mix among drillers consists of 8 sacks of Portland cement per cubic yard (0.76 cubic metre) and uniform aggregate of 3/8 inch (9.5 millimetres) diameter.
5. Bentonite clay mixtures shall be composed of bentonite clay and clean water thoroughly mixed before placement so that there are no balls, clods, etc.

6. Used drillers' mud or cuttings or chips from drilling the borehole shall not be used as sealing material.

7. The minimum time that must be allowed for materials containing cement to "set" before construction operations on the well may be resumed shall be:
 a. Type I cement - 72 hours
 b. Type III cement - 48 hours
 c. Type V cement - 6 hours

When necessary these times may be reduced by the use of "accelerators", i.e., additives designed specifically to shorten setting time.

8. Where thermoplastic casing is used, caution should be exercised to control the heat generated during the curing of the cement (called "heat of hydration"). This is of special concern where casing of thinner wall thicknesses are to be installed. The addition of bentonite to the cement mixture (up to 8 percent) or circulating water inside the casing will lower the temperature of the cement. Additives which accelerate the curing process also tend to increase the heat generated and should not be used where thermoplastic casing is installed.

F. Thickness of Seal. The thickness of the seal shall be at least a nominal 2 inches, and not less than three times the size of the largest coarse aggregate used in the sealing material.

F. Placement of Seal.

1. Before placing the seal all loose cuttings, drilling mud, or other obstructions shall be removed from the annular space by flushing.

1/ Clay in the form of a mud-laden fluid is similar to and has the advantages of neat cement and sand-cement grout. There is a disadvantage in that clay may separate from the fluid. Clay should not be used where structural strength or stability of the seal is required, where flowing or moving water might break it down, or where it might dry out. Although there are other types of clay available, none have the sealing properties (particularly the ability to expand dramatically) comparable to bentonite. Therefore, only bentonite clays are recommended.

2/ In other words, the borehole shall be nominally 4 inches (100 millimetres) larger in diameter than the nominal casing diameter (thus creating a 2-inch, or-50 millimetre annular space).
2. Before sealing commences a packer or similar retaining device or a small quantity of sealant may be placed and permitted to set at the bottom of the interval to be sealed to form a foundation for the seal.

3. The sealing material shall be applied, when possible, in one continuous operation from the bottom of the interval to be sealed to the top. Where the seal is to be very deep (i.e., greater than 100 feet or 30 metres) a short segment at least 10 feet (3 metres) in length may be installed first, allowed to "set" or partially "set" and then the remainder of the seal placed in one continuous operation.

4. Gravity installation of sealant without the aid of a tremie or grout pipe shall not be used unless the interval to be sealed is dry and in no case where the interval is over 30 feet (9 metres) in depth.

Section 10. Surface Construction Features.

A. Openings. Openings into the top of the well which are designed to provide access to the well, i.e., for measuring, chlorinating, adding gravel, etc., shall be protected against entrance of surface waters or foreign matter by installation of watertight caps or plugs. Access openings designed to permit the entrance or egress of air or gas (air or casing vents) shall terminate above the ground and above known flood levels and shall be protected against the entrance of foreign material by installation of downturned and screened "U" bends (see Figures 6 and 7).

All other openings (holes, crevices, cracks, etc.) shall be sealed.

A "sounding tube", 1/ taphole with plug, or similar access (see Figure 6) for the introduction of water level measuring devices shall be affixed to the casing of all wells. For wells fitted with a "well cap" the cap shall have a removable plug for this purpose.

1. Where the pump is installed directly over the casing, a watertight seal (gasket) shall be placed between the pump head and the pump base (slab), or a watertight seal (gasket) shall be placed between the pump base and the rim of the casing, or a "well cap" shall be installed to close the annular opening between the casing and the pump column pipe (see Figures 6 and 7).

1/ A "sounding tube" or similar access is necessary so that the water level in the well can be periodically determined. Knowledge of the water level, both static and pumping levels, is vital to the maintenance of the well and pump and for determining the efficiency of pump. Such information will lead to few and less costly repairs and reduce operating costs.
During prolonged interruptions (i.e., one week or more), a semipermanent cover shall be installed. For wellscased with steel, a steel cover, tack-welded to the top of the casing, is adequate.

Part III. Destruction of Wells

Section 20. Purpose of Destruction.

A well that is no longer useful¹ (including exploration and test holes) must be destroyed in order to:

1. Assure that the ground water supply is protected and preserved for further use.
2. Eliminate the potential physical hazard.

Section 21. Definition of "Abandoned" Well.

A well is considered "abandoned" when it has not been used for a period of one year, unless the owner demonstrates his intention to use the well again for supplying water or other associated purpose² (such as an observation well or injection well). The well shall then be considered "inactive". As evidence of his intentions for continued use, the owner shall properly maintain the well in such a way that:

1. The well has no defects which will allow the impairment of quality of water in the well or in the water-bearing formations penetrated.
2. The well is covered such that the cover is watertight and cannot be removed except with the aid of equipment or the use of tools.
3. The well is marked so that it can be clearly seen.
4. The area surrounding the well is kept clear of brush or debris.

¹ Very often wells are prematurely abandoned and destroyed. However, proper maintenance will ensure that they will continue to produce for many years. The maintenance program should include regular measurement of the water level (depth to water from ground surface), determination of water quality, pump tests (for determination of pump and well efficiency) and cleaning.

² Although it should be obvious, the reader is reminded that an "abandoned" well should never be used for the disposal of trash, garbage, sewage (except where sewage is reclaimed for recharging the ground water basin, and then only in accordance with the provisions of Section 4458 of the California Health and Safety Code and Section 13540 of the Water Code).
If the pump has been removed for repair or replacement, the well shall not be considered "abandoned". During the repair period, the well shall be adequately covered to prevent injury to people and to prevent the entrance of undesirable water or foreign matter.

Observation or test wells used in the investigation or management of ground water basins by governmental agencies or engineering or research organizations are not considered "abandoned" so long as they are maintained for this purpose. However, such wells shall be covered with an appropriate cap, bearing the label, "Observation Well", and the name of the agency or organization, and preferably shall be locked when measurements are not being made. When these wells are no longer used for this purpose or for supplying water, they shall be considered "abandoned".

Section 22. General Requirement.

All "abandoned" wells and exploration or test holes shall be destroyed. The objective of destruction is to restore as nearly as possible those subsurface conditions which existed before the well was constructed taking into account also changes, if any, which have occurred since the time of construction. (For example, an aquifer which may have produced good quality water at one time but which now produces water of inferior quality, such as a coastal aquifer that has been invaded by seawater.)

Destruction of a well shall consist of the complete filling of the well in accordance with the procedures described in Section 23 (following).

Section 23. Requirements for Destroying Wells.

A. Preliminary Work. Before the well is destroyed, it shall be investigated to determine its condition, details of construction, and whether there are obstructions that will interfere with the process of filling and sealing. This may include the use of downhole television and photography for visual inspection of the well.

1. If there are any obstructions, they shall be removed, if possible, by cleaning out the hole.

2. Where necessary, to ensure that sealing material fills not only the well casing but also any annular space or nearby voids within the zone(s) to be sealed, the casing should be perforated or otherwise punctured.

3. In some wells, it may be necessary or desirable to remove a part of the casing. However, in many instances this can be done only as the well is filled. For dug wells, as much of the lining as possible (or safe) should be removed prior to filling.

B. Filling and Sealing Conditions. Following are requirements to be observed when certain conditions are encountered:
1. Well wholly situated in unconsolidated material in an unconfined ground water zone (Figure 9A). If the ground water supplies are within 50 feet (15 metres) of the surface, the upper 20 feet (6 metres) shall be sealed with impervious material and the remainder of the well shall be filled with clay, sand, or other suitable inorganic material (see item D, this section).

2. Well penetrating several aquifers or formations. In all cases the upper 20 feet (6 metres) of the well shall be sealed with impervious material.

In areas where the interchange of water between aquifers will result in a significant deterioration of the quality of water in one or more aquifers, or will result in a loss of artesian pressure, the well shall be filled and sealed so as to prevent such interchange. Sand or other suitable inorganic material may be placed opposite the producing aquifers and other formations where impervious sealing material is not required. To prevent the vertical movement of water from the producing formation, impervious material must be placed opposite confining formations above and below the producing formations for a distance of 10 feet (3 metres) or more. The formation producing the deleterious water shall be sealed by placing impervious material opposite the formation, and opposite the confining formations for a sufficient vertical distance (but no less than 10 feet or 3 metres) in both directions, or in the case of "bottom" waters, in the upward direction. (See Figure 9B.)

In locations where interchange is in no way detrimental, suitable inorganic material may be placed opposite the formations penetrated. When the boundaries of the various formations are unknown, alternate layers of impervious and pervious material shall be placed in the well.

1/ Determining the significance of interchange of waters whose qualities vary and of the loss of artesian pressures, requires extensive knowledge of the ground water basin in question. The Department of Water Resources has over the years, and frequently in cooperation with agencies such as the U. S. Geological Survey, undertaken a number of ground water studies and amassed considerable information and data about the subject. Although much is known about the State's ground water supplies, detailed studies sufficiently accurate to define interchange problems have been made only in certain areas. In still other areas, there is only partial definition of the problem. Examples of areas where definition has been made are the coastal plain of Los Angeles County and the eastern part of the Santa Clara Valley in Alameda County. An excellent example of a "bottom" water is the saline connate water underlying the Central Valley at varying depths.
Figure 9. PROPERLY DESTROYED WELLS
3. Well penetrating creviced or fractured rock. If creviced or fractured rock formations are encountered just below the surface, the portions of the well opposite this formation shall be sealed with neat cement, sand-cement grout, or concrete. If these formations extend to considerable depth, alternate layers of coarse stone/and cement grout or concrete may be used to fill the well. Fine grained material shall not be used as fill material for creviced or fractured rock formations.

4. Well in noncreviced, consolidated formation. The upper 20 feet (6.1 metres) of a well in a noncreviced, consolidated formation shall be filled with impervious material. The remainder of the well may be filled with clay or other suitable inorganic material.

5. Well penetrating specific aquifers, local conditions. Under certain local conditions, the enforcing agency may require that specific aquifers or formations be sealed off during destruction of the well.

C. Placement of Material. The following requirements shall be observed in placing fill or sealing material in wells to be destroyed:

1. The well shall be filled with the appropriate material (as described in item D of this section) from the bottom of the well up.

2. Where neat cement grout, sand-cement grout, or concrete is used, it shall be poured in one continuous operation.

3. Sealing material shall be placed in the interval or intervals to be sealed by methods that prevent free fall, dilution, and/or separation of aggregates from cementing materials.

4. Where the head (pressure) producing flow is great, special care and methods must be used to restrict the flow while placing the sealing material. In such cases, the casing must be perforated opposite the area to be sealed and the sealing material forced out under pressure into the surrounding formation.

5. In destroying gravel-packed wells, the casing shall be perforated or otherwise punctured opposite the area to be sealed. The sealing material shall then be placed within the casing, completely filling the portion adjacent to the area to be sealed and then forced out under pressure into the gravel envelope.

6. When pressure is applied to force sealing material into the annular space, the pressure shall be maintained for a length of time sufficient for the cementing mixture to set.

1/ The limiting dimensions of coarse stone are usually considered to range between 1/4 and 4 inches (6.3 to 100 millimetres).
7. To assure that the well is filled and there has been no jamming or "bridging" of the material, verification shall be made that the volume of material placed in the well installation at least equals the volume of the empty hole.

D. Materials. Requirements for sealing and fill materials are as follows:

1. Impervious Sealing Materials. No material is completely impervious. However, sealing materials shall have such a low permeability that the volume of water passing through them is of small consequence.

Suitable impervious materials include neat cement, sand-cement grout, concrete, and bentonite clay, all of which are described in Section 9, paragraph D, "Sealing Material" of these standards; and well-proportioned mixes of silts, sands, and clays (or cement), and native soils that have a coefficient of permeability of less than 10 feet (3 metres) per year.\(^1\) Used drilling muds are not acceptable.

2. Filler Material. Many materials are suitable for use as a filler in destroying wells. These include clay, silt, sand, gravel, crushed stone, native soils, mixtures of the aforementioned types, and those described in the preceding paragraph. Material containing organic matter shall not be used.

E. Additional Requirements for Wells in Urban Areas.

In incorporated areas or unincorporated areas developed for multiple habitation, to make further use of the well site, the following additional requirements must be met (see Figure 90):

1. A hole shall be excavated around the well casing to a depth of 5 feet (1.5 metres) below the ground surface and the well casing removed to the bottom of the excavation.

2. The sealing material used for the upper portion of the well shall be allowed to spill over into the excavation to form a cap.

3. After the well has been properly filled, including sufficient time for sealing material in the excavation to set, the excavation shall be filled with native soil.

F. Temporary Cover. During periods when no work is being done on the well, such as overnight or while waiting for sealing material to set, the well and surrounding excavation, if any, shall be covered. The cover shall be sufficiently strong and well enough anchored to prevent the introduction of foreign material into the well and to protect the public from a potentially hazardous situation.

\(^1\) Examples of materials of this type are: very fine sand with a large percentage of silt or clay, inorganic silts, mixtures of silt and clay, and clay. Native materials should not be used when the sealing operation involves the use of pressure.
APPENDIX B

SUGGESTED METHODS FOR SEALING
THE ANNULAR SPACE AND FOR SEALING-OFF STRATA

Sealing the Annular Space

The annular space is the space between the well casing and wall of the drilled hole created during construction. This space must be adequately sealed to prevent the entrance of surface drainage or poor quality subsurface water, which may contaminate or pollute the well. This seal will also protect the casing against corrosion and possible structural failure.

A number of acceptable sealing methods are presented in this appendix. Other methods may be suggested by individual well drillers on the basis of their experience and availability of equipment. An acceptable method should provide for the complete filling of the sealing interval with the appropriate sealing material to the specified depth.

General

Prior to sealing, the annular space should be flushed to remove any loose formation material or drilling mud that might obstruct the operation. The use of centralizers -- devices which are affixed to the casing at regular intervals to prevent it from touching the walls of the hole, thereby keeping the casing centered in the borehole -- are recommended. This assures that the seal is not less than the desired minimum thickness. It is particularly significant for large diameter wells where the casing exceeds 10 inches (250 millimetres) in diameter.

The use of a tremie or grout pipe for the introduction of the sealing material into the annular space is preferred. Where a tremie or grout pipe is used, the minimum annular space should be 2 inches (50 millimetres) and the minimum tremie size should be a nominal 1-1/2 inches (38 millimetres) in diameter.

Gravity installation without a grout pipe or tremie should not be attempted when the sealing interval contains water or cannot be visually inspected (with the aid of a mirror or light). Where sealing material is to be introduced under water or the interval cannot be observed from the surface, methods involving "positive" placement (by a tremie or grout pipe, pumping or other application of pressure) must be used.

The sealing material must always be introduced at the bottom of the interval to be sealed. This prevents "bridging" (jamming) or segregation (separation of large aggregate from the mixture in sand-cement or concrete grouts) of the sealing material and eliminates gaps.
Sealing should be accomplished in one continuous operation. Where the sealing interval will exceed 100 feet (30.5 metres) in length, consideration must be given to the collapse strength of the casing. Further, because of the weight of such extensive seals, consideration must also be given to the installation of stronger retaining devices and to staging the placement of the seal (as, for example, the installation of a short segment of rapid-setting sealant in advance of the main body of sealing material; the former becomes a foundation to support the extensive seal).

Sealing Methods

The following methods can be used to seal the upper portion of the annular space. Except for the first, these methods are illustrated on Figure 10. The first method is frequently used where short seals, under 20 feet (6 metres) deep, are placed in dry material.

Gravity Installation (Without Tremie). In this method sealing material is poured into the annular space without the use of a tremie or grout pipe. It cannot be used where the annular space contains water and is limited to intervals less than 30 feet (9 metres) deep. When used, visual observation (with the aid of a mirror or light) should be made during placement of the seal.

Grout Pipe Method. In this method, the seal is placed in the annular space by gravity through a grout pipe (or tremie) suspended in the annular space (see Figure 10).

1. Drill the hole large enough to accommodate the grout pipe (at least 4 inches or 100 millimetres, greater in diameter than the diameter of the casing).

2. In caving formations, install a conductor casing.

3. Provide a packer or grout retainer in the annular space below the interval to be sealed.

4. Extend the grout pipe down the annular space between the casing and the wall or conductor to near the bottom of the interval to be sealed just above the retainer.

5. Add grout in one continuous operation, beginning at the bottom of the interval to be sealed. The bottom end of the grout pipe should remain submerged in the sealing material during the entire time it is being placed. The grout pipe is gradually withdrawn as the sealing material is placed. Where a conductor casing is used to hold back caving material, it may be withdrawn as the sealing material is placed.

Pumping—Exterior Placement. For this method the same procedure as described for the Grout Pipe Method (above) is followed except that the material is placed by pumping instead of by gravity flow. The grout pipe must always be full of sealing material and its bottom end must remain submerged in the sealing material until the interval has been filled.
Figure 10. METHODS FOR SEALING THE ANNULAR SPACE
Pressure Cap Method. In the pressure cap method, the grouting is done with the hole drilled about 2 feet (0.6 metre) below the bottom of the conductor casing and the remainder of the well drilled after the grout is in place and set. The grout is placed through a grout pipe set inside the conductor casing.

1. The casing is suspended about 2 feet (0.6 metre) above the bottom of the drilled hole and filled with water.

2. A pressure cap is placed over the conductor casing and grout pipe extended through the cap and casing to the bottom of the hole.

3. The grout is forced through the pipe, up into the annular space around the outside of the conductor casing, to the ground surface.

4. When the grout has set, the pressure cap and the plug formed during grouting are removed and drilling of the rest of the well is continued.

Because there is the possibility that coarse aggregate will "jam" the grout pipe, concrete cannot be used as a sealant when this method is used.

Continuous Injection. This method, called the Normal Displacement Method in the oil industry (which developed it), involves pumping grout through a tube or pipe centered in the casing via a "float shoe" fitted at the bottom of the casing. The grout is forced up into the annular space to the ground surface as is the case with the pressure cap method (above). The tube is detached and flushed. The float shoe, which has a back pressure valve, is drilled out. Because there is the possibility that coarse aggregate will "jam" the grout pipe, concrete cannot be used with this method.

Sealing-off Strata

When the hole for a well is drilled, a strata may be found that produces water of undesirable quality. To prevent the movement of this water into other strata and to maintain the quality of the water to be produced by the well, such strata must be sealed-off. Also, where a highly porous non-water producing strata is encountered, it too must be sealed-off to prevent the loss of water or hydraulic pressure from the well.

The following methods can be used in sealing-off strata or zones (see Figure II). In addition, several of the methods described for sealing the upper annular space can also be used.

Pressure-Grouting Method. This method can be employed where a substantial annular space exists between the well casing and the wall of the drilled hole.
1. Perforate the casing opposite the interval to be sealed.

2. Place a packer or other sealing device in the casing below the bottom of the perforated interval.

3. Use a dump bailer or grout pipe to place grout in the casing opposite the interval to be sealed. Sufficient grout shall be placed to fill the annular space and extend out into the strata to be sealed-off.

4. Place a packer or other sealing device in the casing above the perforations.

5. Apply pressure to the top packer to force the grout through the perforations into the interval to be sealed.

6. Maintain pressure until the material has set.

7. Drill out the packers and other material remaining in the well.

Frequently, an assembly consisting of inflatable (balloon) packers and grout pipe is used. The packers are placed to enclose the interval to be sealed, they are inflated and the grout pumped down the hose (which passes through the upper packer) into the interval to be sealed. Water is then pumped into the interval, squeezing the grout through the perforations. When the grout is sufficiently hardened, the packers are deflated and removed.

Liner Method. Where the annular space between the casing and the wall of the drilled hole is minimal, the liner method can be employed.

1. Perforate the casing opposite the interval to be sealed.

2. Place a smaller diameter metal liner, about 2 inches (50 millimetres) less in diameter, inside the casing opposite the perforated interval to be sealed, and extend it at least 10 feet (3 metres) above and below the perforated interval.

3. Provide a grout retaining seal at the bottom of the annular space between the liner and the well casing.

4. Extend the grout pipe into the opening between the liner and casing, and fill the annular space with grout in one continuous operation.

5. The bottom end of the grout pipe should remain submerged in the sealing material during the entire time it is being placed. The grout pipe is gradually withdrawn as the sealing material is placed.
California
Well Standards
Water wells · Monitoring wells · Cathodic protection wells

Bulletin 74-90
(Supplement to Bulletin 74-81)

David N. Kennedy
Director
Department of Water Resources

Douglas P. Wheeler
Secretary for Resources
The Resources Agency

Pete Wilson
Governor
State of California

California
Department of Water Resources
June 1991
Part II. Well Construction

Section 8. Well Location With Respect to Pollutants and Contaminants, and Structures.

Note: The title of Section 8 has been revised.

Section 8 (page 26 of Bulletin 74-81) has been revised to read as follows:

A. Separation. All water wells shall be located an adequate horizontal distance from known or potential sources of pollution and contamination. Such sources include, but are not limited to:

- sanitary, industrial, and storm sewers;
- septic tanks and leachfields;
- sewage and industrial waste ponds;
- barnyard and stable areas;
- feedlots;
- solid waste disposal sites;
- above and below ground tanks and pipelines for storage and conveyance of petroleum products or other chemicals; and,
- storage and preparation areas for pesticides, fertilizers, and other chemicals.

Consideration should also be given to adequate separation from sites or areas with known or suspected soil or water pollution or contamination.

The following horizontal separation distances are generally considered adequate where a significant layer of unsaturated, unconsolidated sediment less permeable than sand is encountered between ground surface and ground water. These distances are based on present knowledge and past experience. Local conditions may require greater separation distances to ensure ground water quality protection.

<table>
<thead>
<tr>
<th>Potential Pollution or Contamination Source</th>
<th>Minimum Horizontal Separation Distance Between Well and Known or Potential Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any sewer line (sanitary, industrial, or storm; main or lateral)</td>
<td>50 feet</td>
</tr>
<tr>
<td>Watertight septic tank or subsurface sewage leaching field</td>
<td>100 feet</td>
</tr>
<tr>
<td>Cesspool or seepage pit</td>
<td>150 feet</td>
</tr>
<tr>
<td>Animal or fowl enclosure</td>
<td>100 feet</td>
</tr>
</tbody>
</table>

If the well is a radial collector well, minimum separation distances shall apply to the furthest extended point of the well.
Many variables are involved in determining the "safe" separation distance between a well and a potential source of pollution or contamination. No set separation distance is adequate and reasonable for all conditions. Determination of the safe separation distance for individual wells requires detailed evaluation of existing and future site conditions.

Where, in the opinion of the enforcing agency adverse conditions exist, the above separation distances shall be increased, or special means of protection, particularly in the construction of the well, shall be provided, such as increasing the length of the annular seal.

Lesser distances than those listed above may be acceptable where physical conditions preclude compliance with the specified minimum separation distances and where special means of protection are provided. Lesser separation distances must be approved by the enforcing agency on a case-by-case basis.

B. Gradients. Where possible, a well shall be located up the ground water gradient from potential sources of pollution or contamination. Locating wells up gradient from pollutant and contaminant sources can provide an extra measure of protection for a well. However, consideration should be given that the gradient near a well can be reversed by pumping, as shown in Figure 3 (page 28 of Bulletin 74-81), or by other influences.

C. Flooding and Drainage. If possible, a well should be located outside areas of flooding. The top of the well casing shall terminate above grade and above known levels of flooding caused by drainage or runoff from surrounding land. For community water supply wells, this level is defined as the:

"...floodplain of a 100 year flood..." or above "...any recorded high tide...",
(Section 64417, Siting Requirements, Title 22 of the California Code of Regulations.)

If compliance with the casing height requirement for community water supply wells and other water wells is not practical, the enforcing agency shall require alternate means of protection.

Surface drainage from areas near the well shall be directed away from the well. If necessary, the area around the well shall be built up so that drainage moves away from the well.

D. Accessibility. All wells shall be located an adequate distance from buildings and other structures to allow access for well modification, maintenance, repair, and destruction, unless otherwise approved by the enforcing agency.

Section 9. Sealing the Upper Annular Space.

Note: Sealing requirements are also described in Appendix B, page 67 of Bulletin 74-81.

Section 9 (page 29 of Bulletin 74-81) has been revised to read as follows:

"The space between the well casing and the wall of the drilled hole, often referred to as the annular space, shall be effectively sealed to prevent it from being a preferential pathway for movement of poor-quality water, pollutants, or contaminants. In some cases, secondary purposes of an annular seal are to protect casing against corrosion or degradation, ensure the structural integrity of the casing, and stabilize the borehole wall."
A. **Minimum Depth of Annular Surface Seal.** The annular surface seal for various types of water wells shall extend from ground surface to the following minimum depths:

<table>
<thead>
<tr>
<th>Well Type</th>
<th>Minimum Depth Seal Must Extend Below Ground Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Water Supply</td>
<td>50 feet</td>
</tr>
<tr>
<td>Industrial</td>
<td>50 feet</td>
</tr>
<tr>
<td>Individual Domestic</td>
<td>20 feet</td>
</tr>
<tr>
<td>Agricultural</td>
<td>20 feet</td>
</tr>
<tr>
<td>Air-Conditioning</td>
<td>20 feet</td>
</tr>
<tr>
<td>All Other Types</td>
<td>20 feet</td>
</tr>
</tbody>
</table>

1. **Shallow ground water.** Exceptions to minimum seal depths can be made for shallow wells at the approval of the enforcing agency, where the water to be produced is at a depth less than 20 feet. In no case shall an annular seal extend to a total depth less than 10 feet below land surface. The annular seal shall be no less than 10 feet in length.

Caution shall be given to locating a well with a 'reduced' annular seal with respect to sources of pollution or contamination. Such precautions include horizontal separation distances greater than those listed in Section 8, page 12, above.

2. **Encroachment on known or potential sources of pollution or contamination.** When, at the approval of the enforcing agency, a water well is to be located closer to a source of pollution or contamination than allowed by Section 8, page 12, above, the annular space shall be sealed from ground surface to the first impervious stratum, if possible. The annular seal for all such wells shall extend to a minimum depth of 50 feet.

3. **Areas of freezing.** The top of an annular surface seal may be below ground surface in areas where freezing is likely, but in no case more than 4 feet below ground surface. 'Freezing' areas are those where the mean length of the freeze-free period described by the National Weather Service is less than 100 days. In other words, 'freezing' areas are where temperatures at or below 32 degrees Fahrenheit are likely to occur on any day during a period of 265 or more days each year. In general, these areas include:

 - portions of Modoc, Lassen, and Siskiyou Counties;
 - portions of the North Lahontan area including the eastern slope of the Sierra Nevada and related valleys north of Mount Whitney and Mono Lake; and,
 - the area of Lake Arrowhead in the San Bernardino Mountains.

4. **Vaults.** At the approval of the enforcing agency, the top of an annular surface seal and well casing can be below ground surface where traffic or other conditions require, if the seal and casing extend to a watertight and structurally sound subsurface vault, or equivalent feature. In no case shall the top of the annular surface seal be more
than 4 feet below ground surface. The vault shall extend from the top of the annular seal to at least ground surface.

The use of subsurface vaults to house the top of water wells below ground surface is rare and is discouraged due to susceptibility to the entrance of surface water, pollutants, and contaminants. Where appropriate, pitless adapters should be used in place of vaults.

B. Sealing Conditions. The following requirements are to be observed for sealing the annular space.

1. Wells drilled in unconsolidated, caving material. An 'oversized' hole, at least 4 inches greater in diameter than the outside diameter of the well casing, shall be drilled and a conductor casing temporarily installed to at least the minimum depth of annular seal specified in Subsection A, page 14, above. Permanent conductor casing may be used if it is installed in accordance with Item 3, page 16, below, and Item 5 (page 32 of Bulletin 74-81) and if it extends at least to the depth specified in Subsection A, above. One purpose of conductor casing is to hold the annular space open during well drilling and during the placement of the well casing and annular seal.

Temporary conductor casing shall be withdrawn as sealing material is placed between the well casing and borehole wall, as shown in Figure 4A (page 31 of Bulletin 74-81). Sealing material shall be placed at least within the interval specified in Subsection A, above. The sealing material shall be kept at a sufficient height above the bottom of the temporary conductor casing as it is withdrawn to prevent caving of the borehole wall.

Temporary conductor casing may be left in place in the borehole after the placement of the annular seal only if it is impossible to remove because of unforeseen conditions and not because of inadequate drilling equipment, or if its removal will seriously jeopardize the integrity of the well and the integrity of subsurface barriers to pollutant or contaminant movement. Temporary conductor casing may be left in place only at the approval of the enforcing agency on a case-by-case basis.

Every effort shall be made to place sealing material between the outside of temporary conductor casing that cannot be removed and the borehole wall to fill any possible gaps or voids between the conductor casing and the borehole wall. At least two inches of sealing material shall be maintained between the conductor casing and well casing. At a minimum, sealing material shall extend through intervals specified in Subsection A, above.

Sealing material can often be placed between temporary conductor casing that cannot be removed and the borehole wall by means of pressure grouting techniques, as described below and in Appendix B (page 67 of Bulletin 74-81). Other means of placing sealing material between the conductor casing and the borehole wall can be used, at the approval of the enforcing agency.

Pressure grouting shall be accomplished by perforating temporary conductor casing that cannot be removed, in place. The perforations are to provide passages for sealing material to pass through the conductor casing to fill any spaces and voids between the casing and borehole wall. Casing perforations shall be a suitable size and density to allow the passage of sealing materials through the casing and the proper distribution
of sealing material in spaces between the casing and borehole wall. At a minimum, the perforations shall extend through the intervals specified in Subsection A, above, unless otherwise approved by the enforcing agency.

Temporary conductor casing that must be left in place shall be perforated immediately before sealing operations begin to prevent drilling or well construction operations from clogging casing perforations. Once the casing has been adequately perforated, sealing material shall be placed inside the conductor casing and subjected to sufficient pressure to cause the sealing material to pass through the conductor casing perforations and completely fill any spaces or voids between the casing and borehole wall, at least within the intervals specified in Subsection A, above. Sealing material shall consist of neat cement, or bentonite prepared from powdered bentonite and water, unless otherwise approved by the enforcing agency.

Sealing material must also fill the annular space between the conductor casing and the well casing within required sealing intervals.

2. Wells drilled in unconsolidated material with significant clay layers. An 'oversized' hole, at least 4 inches greater in diameter than the outside diameter of the well casing, shall be drilled to at least the depth specified in Subsection A, page 14, above, and the annular space between the borehole wall and the well casing filled with sealing material in accordance with Subsection A, above (see Figure 4B, page 31 of Bulletin 74-81). If a significant layer of clay or clay-rich deposits of low permeability is encountered within 5 feet of the minimum seal depth prescribed in Subsection A, above, the annular seal shall be extended at least 5 feet into the clay layer. Thus, the depth of seal could be required to be extended as much as another 10 feet. If the clay layer is less than 5 feet in total thickness, the seal shall extend through its entire thickness.

If caving material is present within the interval specified in Subsection A, a temporary conductor casing shall be installed to hold the borehole open during well drilling and placement of the casing and annular seal, in accordance with the requirements of Item 1, page 15, above. Permanent conductor casing may be used if it is installed in accordance with Item 3, below and Item 5 (page 32 of Bulletin 74-81) and it extends to at least the depth specified in Subsection A, above.

3. Wells drilled in soft consolidated formations (extensive clays, sandstones, etc.). An 'oversized' hole, at least 4 inches greater in diameter than the outside diameter of the well casing, shall be drilled to at least the depth specified in Subsection A, page 14, above. The space between the well casing and the borehole shall be filled with sealing material to at least the depth specified in Subsection A, above, as shown by Figure 4C (page 31 of Bulletin 74-81).

If a permanent conductor casing is to be installed to facilitate the construction of the well, an oversized hole, at least 4 inches greater in diameter than the outside surface of the permanent conductor casing, shall be drilled to the bottom of the conductor casing or to at least the depth specified in Subsection A, above, and the annular space between the conductor casing and the borehole wall filled with sealing material. In some cases, such as in cable tool drilling, it may be necessary to extend permanent conductor casing beyond the depth of the required depth of the annular surface seal in order to maintain the borehole. Sealing material is not required between conductor
casing and the borehole wall other than the depths specified in Subsection A, above, and Section 13, below (page 46 of Bulletin 74-81)."

Items 4 through 7 (page 32 of Bulletin 74-81) are unchanged. Item 8 has been added, as follows:

"8. Wells that penetrate zones containing poor-quality water, pollutants, or contaminants. If geologic units or fill known or suspected to contain poor-quality water, pollutants, or contaminants are penetrated during drilling, and, the possibility exists that poor-quality water, pollutants, or contaminants could move through the borehole during drilling and well construction operations and significantly degrade ground water quality in other units before sealing material can be installed, then precautions shall be taken to seal off or 'isolate' zones containing poor-quality water, pollutants, and contaminants during drilling and well construction operations. Special precautions could include the use of temporary or permanent conductor casing, borehole liners, and specialized drilling equipment. The use of conductor casing is described in Item 1, page 15, above."

Subsection C (page 34 of Bulletin 74-81) is unchanged. Subsections D, E, and F (page 34 of Bulletin 74-81) have been changed to read as follows:

"D. **Sealing Material.** Sealing material shall consist of neat cement, sand cement, concrete, or bentonite. Cuttings from drilling, or drilling mud, shall not be used for any part of the sealing material.

1. **Water.** Water used to prepare sealing mixtures should generally be of drinking water quality, shall be compatible with the type of sealing material used, be free of petroleum and petroleum products, and be free of suspended matter. In some cases water considered nonpotable, with a maximum of 2,000 milligrams per liter chloride and 1,500 mg/l sulfate, can be used for cement-based sealing mixtures. The quality of water to be used for sealing mixtures shall be determined where unknown.

Types of Portland cement available under ASTM C150 for general construction are:

Type I - General purpose. Similar to American Petroleum Institute Class A.

Type II - Moderate resistance to sulfate. Lower heat of hydration than Type I. Similar to API Class B.

Type III - High early strength. Reduced curing time but higher heat of hydration than Type I. Similar to API Class C.

Type IV - Extended setting time. Lower heat of hydration than Types I and III.

Type V - High sulfate resistance.

Special cement setting accelerators and retardants and other additives may be used in some cases. Special field additives for Portland cement mixtures shall meet the requirements of ASTM C494, *Standard Specification for Chemical Admixtures for Concrete*, and latest revision thereof.
Hydrated lime may be added up to 10 percent of the volume of cement used to make the seal mix more fluid. Bentonite may be added to cement-based mixes, up to 6 percent by weight of cement used, to improve fluid characteristics of the sealing mix and reduce the rate of heat generation during setting.

Dry additives should be mixed with dry cement before adding water to the mixture to ensure proper mixing, uniformity of hydration, and an effective and homogeneous seal. The water demand of additives shall be taken into account when water is added to the mix.

Minimum times required for sealing materials containing Portland cement to set and begin curing before construction operations on a well can be resumed are:

- Types I and II cement - 24 hours
- Type III cement - 12 hours
- Type V cement - 6 hours

Type IV cement is seldom used for annular seals because of its extended setting time.

Allowable setting times may be reduced or lengthened by use of accelerators or retardants specifically designed to modify setting time, at the approval of the enforcing agency.

More time shall be required for cement-based seals to cure to allow greater strength when construction or development operations following the placement of the seal may subject casing and sealing materials to significant stress. Subjecting a well to significant stress before a cement-based sealing material has adequately cured can damage the seal and prevent proper bonding of cement-based sealants to casing(s).

If plastic well casing is used, care shall be exercised to control the heat of hydration generated during the setting and curing of cement in an annular seal. Heat can cause plastic casing to weaken and collapse. Heat generation is a special concern if thin-wall plastic well casing is used, if the well casing will be subject to significant net external pressure before the setting of the seal, and/or if the radial thickness of the annular seal is large. Additives that accelerate cement setting also tend to increase the rate of heat generation during setting and, thus, should be used with caution where plastic casing is employed.

The temperature of a setting cement seal can be lowered by circulating water inside the well casing and/or by adding bentonite to the cement mixture, up to 6 percent by weight of cement used.

Cement-based sealing material shall be constituted as follows:

a. Neat Cement. For Types I or II Portland cement, neat cement shall be mixed at a ratio of one 94-pound sack of Portland cement to 5-to 6 gallons of 'clean' water. Additional water may be required where special additives, such as bentonite, or 'accelerators' or 'retardants' are used.

b. Sand Cement. Sand-cement shall be mixed at a ratio of not more than 188 pounds of sand to one 94-pound sack of Portland cement (2 parts sand to 1 part cement, by weight) and about 7 gallons of clean water, where Type I or Type II Portland cement is used. This is equivalent to a '10.3 sack mix.' Less
water shall be used if less sand than 2 parts sand per one part cement by weight is used. Additional water may be required when special additives, such as bentonite, or 'accelerators' or 'retardants' are used.

c. Concrete. Concrete is often useful for large volume annular seals, such as in large-diameter wells. The proper use of aggregate can decrease the permeability of the annular seal, reduce shrinkage, and reduce the heat of hydration generated by the seal.

Concrete shall consist of Portland cement and aggregate mixed at a ratio of at least six-94 pound sacks of Portland cement per cubic yard of aggregate. A popular concrete mix consists of eight-94 pound sacks of Type I or Type II Portland cement per cubic yard of uniform 3/8-inch aggregate.

In no case shall the size of the aggregate be more than 1/5 the radial thickness of the annular seal. Water shall be added to concrete mixes to attain proper consistency for placement, setting, and curing.

d. Mixing. Cement-based sealing materials shall be mixed thoroughly to provide uniformity and ensure that no 'lumps' exist.

Ratios of the components of cement-based sealing materials can be varied depending on the type of cement and additives used. Variations must be approved by the enforcing agency.

3. Bentonite. Bentonite clay in 'gel' form has some of the advantages of cement-based sealing material. A disadvantage is that the clay can sometimes separate from the clay-water mixture.

Although many types of clay mixtures are available, none has sealing properties comparable to bentonite clay. Bentonite expands significantly in volume when hydrated. Only bentonite clay is an acceptable clay for annular seals.

Unamended bentonite clay seals should not be used where structural strength of the seal is required, or where it will dry. Bentonite seals may have a tendency to dry, shrink and crack in arid and semi-arid areas of California where subsurface moisture levels can be low. Bentonite clay seals can be adversely affected by subsurface chemical conditions, as can cement-based materials.

Bentonite clay shall not be used as a sealing material if roots from trees and other deep rooted plants might invade and disrupt the seal, and/or damage the well casing. Roots may grow in an interval containing a bentonite seal depending on surrounding soil conditions and vegetation.

Bentonite-based sealing material shall not be used for sealing intervals of fractured rock or sealing intervals of highly unstable, unconsolidated material that could collapse and displace the sealing material, unless otherwise approved by the enforcing agency. Bentonite clay shall not be used as a sealing material where flowing water might erode it.

Bentonite clay products used for sealing material must be specifically prepared for such use. Used drilling mud and/or cuttings from drilling shall not be used in sealing material.
Bentonite used for annular seals shall be commercially prepared, powdered, granulated, pelletized, or chipped/crushed sodium montmorillonite clay. The largest dimension of pellets or chips shall be less than 1/5 the radial thickness of the annular space into which they are placed.

Bentonite clay mixtures shall be thoroughly mixed with clean water prior to placement. A sufficient amount of water shall be added to bentonite to allow proper hydration. Depending on the bentonite sealing mixture used, 1 gallon of water should be added to about every 2 pounds of bentonite. Water added to bentonite for hydration shall be of suitable quality and free of pollutants and contaminants.

Bentonite preparations normally require 1/2 to 1 hour to adequately hydrate. Actual hydration time is a function of site conditions and the form of bentonite used. Finely divided forms of bentonite generally require less time for hydration, if properly mixed.

Dry bentonite pellets or chips may be placed directly into the annular space below water, where a short section of annular space, up to 10 feet in length, is to be sealed. Care shall be taken to prevent bridging during the placement of bentonite seal material.

E. Radial Thickness of Seal. A minimum of two inches of sealing material shall be maintained between all casings and the borehole wall, within the interval to be sealed, except where temporary conductor casing cannot be removed, as noted in Subsection B, page 15, above. A minimum of two inches of sealing material shall also be maintained between each casing, such as permanent conductor casing, well casing, gravel fill pipes, etc., in a borehole within the interval to be sealed, unless otherwise approved by the enforcing agency. Additional space shall be provided, where needed, for casings to be properly centralized and spaced and allow the use of a tremie pipe during well construction (if required), especially for deeper wells.

F. Placement of Seal.

1. Obstructions. All loose cuttings, or other obstructions to sealing shall be removed from the annular space before placement of the annular seal.

2. Centralizers. Well casing shall be equipped with centering guides or 'centralizers' to ensure the 2-inch minimum radial thickness of the annular seal is at least maintained. Centralizers need not be used in cases where the well casing is centered in the borehole during well construction by use of removable tools, such as hollow-stem augers.

The spacing of centralizers is normally dictated by the casing materials used, the orientation and straightness of the borehole, and the method used to install the casing.

Centralizers shall be metal, plastic, or other non-degradable material. Wood shall not be used as a centralizer material. Centralizers must be positioned to allow the proper placement of sealing material around casing within the interval to be sealed.

Any metallic component of a centralizer used with metallic casing shall consist of the same material as the casing. Metallic centralizer components shall meet the same metallurgical specifications and standards as the metallic casing to reduce the potential for galvanic corrosion of the casing.
3. **Foundation and Transition Seals**. A packer or similar retaining device, or a small quantity of sealant that is allowed to set, can be placed at the bottom of the interval to be sealed before final sealing operations begin to form a foundation for the seal.

A transition seal, up to 5 feet in length, consisting of bentonite, is sometimes placed in the annular space to separate filter pack and cement-based sealing materials. The transition seal can prevent cement-based sealing materials from infiltrating the filter pack. A short interval of fine-grained sand, usually less than 2 feet in length, is sometimes placed between the filter pack and the bentonite transition seal to prevent bentonite from entering the filter pack. Also, fine sand is sometimes used in place of bentonite as the transition seal material.

Fine-sized forms of bentonite, such as granules and powder, are usually employed for transition seals if a transition seal is to be placed above the water level in a well boring. Coarse forms of bentonite, such as pellets and chips, are often used where a bentonite transition seal is to be placed below the water level.

Transition seals should be installed by use of a tremie pipe, or equivalent. However, some forms of bentonite may tend to bridge or clog in a tremie pipe.

Bentonite can be placed in dry form or as slurry for use in transition seals. Water should be added to the bentonite transition seal prior to the placement of cement-based sealing materials where bentonite is dry in the borehole. Care should be exercised during the addition of water to the borehole to prevent displacing the bentonite.

Water should be added to bentonite at a ratio of about 1 gallon for every 2 pounds of bentonite to allow for proper hydration. Water added to bentonite for hydration shall be of suitable quality and free of pollutants and contaminants.

Sufficient time should be allowed for bentonite transition seals to properly hydrate before cement-based sealing materials are placed. Normally, 1/2 to 1 hour is required for proper hydration to occur. Actual time of hydration is a function of site conditions.

The top of the transition seal shall be sounded to ensure that no bridging has occurred during placement.

4. **Timing and Method of Placement**. The annular space shall be sealed as soon as practical after completion of drilling or a stage of drilling. In no case shall the annular space be left unsealed longer than 14 days following the installation of casing.

Sealing material shall be placed in one continuous operation from the bottom of the interval to be sealed, to the top of the interval. Where the seal is more than 100 feet in length, the deepest portion of the seal may be installed first and allowed to set or partially set. The deep initial seal shall be no longer than 10 feet in length. The remainder of the seal shall be placed above the initial segment in one continuous operation.

Sealing material shall be placed by methods (such as the use of a tremie pipe or equivalent) that prevent freefall, bridging, or dilution of the sealing material, or separation of sand or aggregate from the sealing material. Annular sealing materials
shall not be installed by freefall unless the interval to be sealed is dry and no deeper than 30 feet below ground surface.

5. **Ground Water Flow.** Special care shall be used to restrict the flow of ground water into a well boring while placing material, where subsurface pressure causing the flow of water is significant.

6. **Verification.** It shall be verified that the volume of sealing material placed at least equals or exceeds the volume to be sealed.

7. **Pressure.** Pressure required for placement of sealing materials shall be maintained long enough for cement-based sealing materials to properly set."

Section 10. Surface Construction Features.

Subsection A, Item 5; Subsection B; and Subsection F (page 39 of Bulletin 74-81) have been changed. The remainder of Section 10 (page 36 of Bulletin 74-81) is unchanged.

"A. **Openings.**

5. **Bases.** A concrete base or pad, sometimes called a pump block or pump pedestal, shall be constructed at ground surface around the top of the well casing and contact the annular seal, unless the top of the casing is below ground surface, as provided by Subsection B, page 23, below.

The base shall be free of cracks, voids, or other significant defects likely to prevent water tightness. Contacts between the base and the annular seal, and the base and the well casing, must be water tight and must not cause the failure of the annular seal or well casing. Where cement-based annular sealing material is used, the concrete base shall be poured before the annular seal has set, unless otherwise approved by the enforcing agency.

The upper surface of the base shall slope away from the well casing. The base shall extend at least two feet laterally in all directions from the outside of the well boring, unless otherwise approved by the enforcing agency. The base shall be a minimum of 4 inches thick.

A minimum base thickness of 4 inches is normally acceptable for small diameter, single-user domestic wells. The base thickness should be increased for larger wells. Shape and design requirements for well pump bases vary with the size, weight, and type of pumping equipment to be installed, engineering properties of the soil on which the base is to be placed, and local environmental conditions. A large variety of base designs have been used. The Vertical Turbine Pump Association has developed a standard base design for large lineshaft turbine pumps. This design consists of a square, concrete pump base whose design is dependent on bearing weight and site soil characteristics.

Where freezing conditions require the use of a pitless adapter, and the well casing and annular seal do not extend above ground surface or into a pit or vault, a concrete base or pad shall be constructed as a permanent location monument for the covered well. The base shall be 3 feet in length on each side and 4 inches in thickness, unless
Part III. Destruction of Wells

Section 21. Definition of "Abandoned" Well.

Section 21 (page 52 of Bulletin 74-81) has been revised as follows:

"A well is considered 'abandoned' or permanently inactive if it has not been used for one year, unless the owner demonstrates intention to use the well again. In accordance with Section 24400 of the California Health and Safety Code, the well owner shall properly maintain an inactive well as evidence of intention for future use in such a way that the following requirements are met:

1. The well shall not allow impairment of the quality of water within the well and ground water encountered by the well.

2. The top of the well or well casing shall be provided with a cover, that is secured by a lock or by other means to prevent its removal without the use of equipment or tools, to prevent unauthorized access, to prevent a safety hazard to humans and animals, and to prevent illegal disposal of wastes in the well. The cover shall be watertight where the top of the well casing or other surface openings to the well are below ground level, such as in a vault or below known levels of flooding. The cover shall be watertight if the well is inactive for more than five consecutive years. A pump motor, angle drive, or other surface feature of a well, when in compliance with the above provisions, shall suffice as a cover.

3. The well shall be marked so as to be easily visible and located, and labeled so as to be easily identified as a well.

4. The area surrounding the well shall be kept clear of brush, debris, and waste materials."

If a pump has been temporarily removed for repair or replacement, the well shall not be considered 'abandoned' if the above conditions are met. The well shall be adequately covered to prevent injury to people and animals and to prevent the entrance of foreign material, surface water, pollutants, or contaminants into the well during the pump repair period."

Section 23. Requirements for Destroying Wells.

Subsection A, Item 1 (page 53 of Bulletin 74-81) and Subsection B, Item 1, (page 54, of Bulletin 74-81) have been changed. The remainder of Section 23 is unchanged.

Subsection A, Item 1 has been revised as follows:

"1. Obstructions. The well shall be cleaned, as needed, so that all undesirable materials, including obstructions to filling and sealing, debris, oil from oil-lubricated pumps, or pollutants and contaminants that could interfere with well destruction are removed for disposal.

The enforcing agency shall be notified as soon as possible if pollutants and contaminants are known or suspected to be in a well to be destroyed. Well destruction operations may then proceed only at the approval of the enforcing agency.

The enforcing agency should be contacted to determine requirements for proper disposal of materials removed from a well to be destroyed."
Subsection B, Item 1 has been revised as follows:

"1. Wells situated in unconsolidated material in an unconfined ground water zone. In all cases the upper 20 feet of the well shall be sealed with suitable sealing material and the remainder of the well shall be filled with suitable fill, or sealing material. (See Figure 9A, page 55 of Bulletin 74-81.)"
Appendix G

Consumer Confidence Report and Water Quality Data
Vital Information on Water Quality for Residents of the Carpinteria Valley

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

June 2016

Dear Carpinteria Valley Residents,

Carpinteria Valley Water District is pleased to present you with this Annual Drinking Water Consumer Confidence Report for the 2015 calendar year.

The District in 2015 met and currently meets or exceeds all state and federal drinking water standards.

Normally more than half of the District’s water delivered to about 16,000 people at their homes and businesses in the Carpinteria Valley would come from Lake Cachuma, including water delivered to Lake Cachuma through the State Water Project Facilities. Due to the on-going Drought, however, the District’s El Carro and Headquarters wells are now providing the greater share of water going out to Carpinteria Valley customers. These wells, along with the ozone facility at the Santa Barbara Cater Treatment Plan and the District’s Gobernador Reservoir aeration system remain instrumental in the District’s on-going efforts to comply with drinking water standards mandated by the U.S Environmental Protection Agency (EPA) and enforced by the California State Water Resources Control Board Division of Drinking Water.

The Division of Drinking Water reviews the District’s drinking water quality data on a regular basis and issues the water supply permit under which the District may deliver drinking water.

If you have any questions or concerns about this report please call me or Operations & Maintenance Manager Greg Stanford at the District office at (805) 684-2816.

Sincerely,

Bob McDonald
General Manager
WHERE YOUR DRINKING WATER COMES FROM

SWP supplied 476 acre feet (12%) of water in 2015.

Montecito

In 2015, CVWD received 714 acre feet (17%) of water from Lake Cachuma.

District wells supplied 2943 acre feet (71%) of groundwater in 2015.

DEFINITIONS

Groundwater: All subsurface water found underground in cracks and spaces in soil, sand and rock. The area where water fills these spaces is the saturated zone, the top of this zone is called the water table.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The level of a disinfectant (chlorine) added for water treatment that may not be exceeded at the customer’s tap.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant (chlorine) added for water treatment at which there is no known or expected risk to health. MRDLGs are set by the USEPA.

Notification Level (NL): Notification levels are health-based levels established by CDPH for chemicals in drinking water that lack MCLs.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standards (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement which a water system must follow.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of drinking water. Secondary Contaminants are not based on health effects at MCL levels.

Surface Water: All water open to the atmosphere and subject to surface runoff such as lakes, reservoirs and rivers. Water from Lake Cachuma and Gibraltar Reservoir is treated at the William B. Cater Water Treatment Plant.

Treatment Technique (TT): A required process intended to reduce the level of contaminant in drinking water.

LEGEND

Symbol “<” denotes ‘less than’
µg/L Micrograms per liter (parts per billion)
mg/L Milligrams per liter (parts per million)
µmho/cm Micro mhos per centimeter
ng/L nanogram per liter (parts per trillion)
pCi/L Picocuries per liter (a measure of radiation)
NA Not Applicable
ND Not detected at testing limit
NTU Nephelometric Turbidity Units
None None Required

BOARD MEETINGS

Carpinteria Valley Water District is governed by a five member Board of Directors elected by you, the customers. The Board meetings may be held on the second and fourth Wednesday of every month at 5:30 p.m. at Carpinteria City Hall, 5775 Carpinteria Avenue.

The Board may also hold regular meetings other Wednesdays of the month at 5:30 p.m. at the District Offices, 1301 Santa Ynez Avenue.

The Board agenda is posted by the front door of the office three days prior to the meeting and on the District website, cvwd.net.
The data noted in the tables identifies all the drinking water contaminants that were detected during the 2015 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table are from testing done January 1 through December 31, 2015. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

PRIMARY STANDARDS

REGULATED CONTAMINANTS WITH PRIMARY MCLs OR MRDLs

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater CVWD Wells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>NA</td>
<td>TT=1 NTU</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2015</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TT=95% of samples ≤0.3 NTU</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2015</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>oocysts/L</td>
<td>NA</td>
<td>TT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>ND</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>mg/L</td>
<td>0.60</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>0.004</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Barium</td>
<td>mg/L</td>
<td>2</td>
<td>1</td>
<td>0.06</td>
<td>0.09</td>
<td>0.08</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Flouride</td>
<td>mg/L</td>
<td>1</td>
<td>2</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>2015</td>
<td>0.37</td>
<td>0.45</td>
</tr>
<tr>
<td>Nitrate as N</td>
<td>mg/L</td>
<td>10</td>
<td>10</td>
<td>2.2</td>
<td>2.6</td>
<td>2.4</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Perchlorate</td>
<td>ug/L</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Radioactive Contaminants

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>(pCi/L)</td>
<td>(0)</td>
<td>15</td>
<td>1.20</td>
<td>1.31</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>5</td>
</tr>
<tr>
<td>Uranium</td>
<td>(pCi/L)</td>
<td>0.43</td>
<td>20.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>NA</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyltertbutylether (MTBE)</td>
<td>ug/L</td>
<td>13</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Microbiological Contaminant Samples

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>sample</td>
<td>0.00</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Disinfection Byproducts, Disinfection Residuals, and Disinfection Byproduct Precursors

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes - TTHM₂</td>
<td>ug/L</td>
<td>NA</td>
<td>LRAA 80</td>
<td>9.1</td>
<td>91.6</td>
<td>67.1</td>
<td>2015</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Haloacetic Acids S - HAAS₂</td>
<td>ug/L</td>
<td>NA</td>
<td>LRAA 60</td>
<td>ND</td>
<td>20</td>
<td>17.5</td>
<td>2015</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Chlorine Residual</td>
<td>mg/L</td>
<td>4.0</td>
<td>4.0</td>
<td>0.4</td>
<td>2.2</td>
<td>1.2</td>
<td>2015</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bromate</td>
<td>ug/L</td>
<td>0.1</td>
<td>10</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>2.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Control of Disinfection By-products Precursors (DBP) Total Organic Carbon (TOC)</td>
<td>(mg/L)</td>
<td>None</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>None</td>
<td>2.60</td>
<td>2.87</td>
</tr>
</tbody>
</table>

Water Softener Settings

The District’s water has a hardness range of **19 to 25 grains per gallon**. One grain per gallon equals **17** milligrams per liter.

Source Water Assessment

The Source Water Assessment for Carpinteria Valley Water District was completed in 2012. A copy of the complete assessment is available at the Carpinteria Valley Water District Office, 1301 Santa Ynez Ave., Carpinteria, CA 93013.
Secondary Standards

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>NA</td>
<td>500</td>
<td>40</td>
<td>44</td>
<td>42</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>units</td>
<td>NA</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/L</td>
<td>0.30</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>NA</td>
<td>300</td>
<td>60</td>
<td>60</td>
<td>2015</td>
<td>110</td>
<td>139</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>NA</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>2015</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>Methylene Blue Active Substances - MBAS</td>
<td>ug/L</td>
<td>NA</td>
<td>500</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>umhos/cm²</td>
<td>NA</td>
<td>1600</td>
<td>869</td>
<td>881</td>
<td>875</td>
<td>2015</td>
<td>879</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>NA</td>
<td>500</td>
<td>116</td>
<td>122</td>
<td>119</td>
<td>2015</td>
<td>241</td>
</tr>
<tr>
<td>Threshold Odor Number at 60 C</td>
<td>TON</td>
<td>NA</td>
<td>3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>3</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>mg/L</td>
<td>NA</td>
<td>1000</td>
<td>560</td>
<td>580</td>
<td>570</td>
<td>2015</td>
<td>592</td>
</tr>
<tr>
<td>Turbidity, Laboratory</td>
<td>NTU</td>
<td>NA</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>2.49</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L</td>
<td>NA</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Contaminants with No MCLs

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Reporting Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron</td>
<td>mg/L</td>
<td>NA</td>
<td>NL=1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>2015</td>
<td>NA</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>NA</td>
<td>NL=50</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
</tr>
</tbody>
</table>

Additional Constituents

- **pH**: Standards Units [7.0-8.5] 2015 7.20-8.22 7.84 Varies in water 0-6=acidic, 7=neutral 8-14=alkaline
- **Total Hardness as CaCO3**: mg/L NA NA 366 375 371 2015 318 370 341 14
- **Total Alkalinity as CaCO3**: mg/L NA NA 260 280 270 2015 176 220 186 14
- **Calcium**: mg/L NA NA 102 104 103 2015 66.1 72.2 70.4 14
- **Magnesium**: mg/L NA NA 27 29 28 2015 39.4 47.0 43.5 14
- **Sodium**: mg/L NA NA 53 53 53 2015 65 75 69.4 14
- **Potassium**: mg/L NA NA 1 2 2 2015 4 4.78 4.44 14

Lead and Copper Rule

Monitored at the Customer’s Tap

- **30 sites sampled in 2013**
- **0 samples exceeded the action levels for copper and lead. Reporting level is equal to 90th percentile of all 30 samples**

<table>
<thead>
<tr>
<th>CONTAMINANTS</th>
<th>Units</th>
<th>PHG (MCLG)</th>
<th>MCL (MRDL)</th>
<th>Range Detected</th>
<th>Reporting Value</th>
<th>Last Date Sampled</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>NA</td>
<td>AL=15</td>
<td>Low</td>
<td>1.3</td>
<td>2013</td>
<td>13</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/L</td>
<td>NA</td>
<td>AL=1.3</td>
<td>0.02</td>
<td>0.65</td>
<td>2013</td>
<td>13</td>
</tr>
</tbody>
</table>

Lead in Plumbing: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Carpinteria Valley Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791. It is also available on the EPA’s website at: http://www.epa.gov/safewater/lead.
Listed in the tables are substances detected in the District’s drinking water or of special interest to certain consumers. Not listed are approximately 139 constituents which were below the laboratory detection levels.

1. Reporting values are determined by methods set by the State depending on the constituent. Most constituent reporting values are determined by simple averaging.

2. Disinfection by-products including Haloacetic acids (HAA5) and Total Trihalomethanes (TTHM) form when naturally occurring organic materials found in potable water react with disinfectants such as Chlorine. In particular, elevated HAA5 or TTHM levels in drinking water pose the following health risk: Some people who drink water containing Bromate, HAA5 or TTHM in excess of the MCL over many years may develop an increased risk of getting cancer.

3. The State requires that we monitor for certain contaminants less frequently than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. As a result, some of the data, though representative of water quality, is more than one year old.

4. Natural Sediment; soil runoff.

5. Erosion of natural deposits.

6. Discharge from steel and pulp mills and chrome plating.

7. Natural deposit; fertilizer.

8. TOC has no known adverse health effects and provides a medium for the formation of disinfection by-products. Sources include plant decay and other natural processes.

9. Sample taken at City of Santa Barbara Cater Treatment Plant.

10. Naturally present in the environment.

12. Used to disinfect potable water.

13. Internal corrosion of household water, plumbing, and erosion of natural deposits.

15. Natural occurring organic materials.

16. An aesthetic concern.

17. Runoff/Leaching of natural deposits.

18. Substances that form ions in water.

19. Industrial waste.

20. Leaking from underground gasoline storage tanks, discharge from petroleum and chemical factories.

21. Foaming agents found in detergents.

22. Municipal and industrial waste discharges. Environmental contamination from aerospace or industrial operations that used, stored, or dispose of perchlorate and its salts.

23. Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly-used filtration methods cannot guarantee 100 percent removal. The City of Santa Barbara monitoring indicates the presence of these organisms in its source water and/or finished water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people, infants and small children, and the elderly are at greater risk of developing life-threatening illness. We encourage immuno-compromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.
Is my drinking water pure?
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at 1-800-426-4791.

How can I know that my drinking water is safe?
In order to ensure that tap water is safe to drink, USEPA and the California Department of Health Services (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Is there a risk to Immuno-compromised persons?
Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

What types of contaminants can be found in drinking water, including bottled water?
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water (prior to treatment) include:

- **Microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Pesticides and herbicides**, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, animal waste, fertilizer and farming operations.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities.

DROUGHT CONTINUES, PREPARE FOR ANOTHER DRY SUMMER!

- **Decreasing lawn watering**
- **Installing drought tolerant or native shrubs and trees.**
- **Converting sprinkler to drip irrigation in plant beds.**
- **Mulching plant beds to keep soil moist and minimize evaporation.**
- **Capturing the cold water before you shower to water plants.**
- **Fixing leaking or broken landscape irrigation fixtures asap.**

Rebates available. For more information visit cvwd.com

WATERING TIPS

Landscape irrigation accounts for approximately 50% of household water use. Reduce use by:

- Decreasing lawn watering NOW!
- Installing drought tolerant or native shrubs and trees.
- Converting sprinkler to drip irrigation in plant beds.
- Mulching plant beds to keep soil moist and minimize evaporation.
- Capturing the cold water before you shower to water plants.
- Fixing leaking or broken landscape irrigation fixtures asap.

LET’S SAVE TOGETHER

Carpinteria Valley Water District

Rebates available. For more information visit cvwd.com
<table>
<thead>
<tr>
<th>PSCODE</th>
<th>GROUP/CONSTITUENT IDENTIFICATION</th>
<th>LAST RESULT</th>
<th>UNITS</th>
<th>MCL</th>
<th>DLR</th>
<th>LAST SAMPLE</th>
<th>FREQ MONTHS</th>
<th>NEXT SAMPLE DUE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4210001 - 004</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>004</td>
<td>LYONS WELL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>SECONDARY/GP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00440</td>
<td>BICARBONATE ALKALINITY</td>
<td>290.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00916</td>
<td>CALCIUM</td>
<td>116.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00445</td>
<td>CARBONATE ALKALINITY</td>
<td>10.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00940</td>
<td>CHLORIDE</td>
<td>56.0000</td>
<td>MG/L</td>
<td>500.000</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00081</td>
<td>COLOR</td>
<td>5.0000</td>
<td>UNITS</td>
<td>15.000</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01042</td>
<td>COPPER</td>
<td>10.0000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>50.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>38260</td>
<td>FOAMING AGENTS (MBAS)</td>
<td>.1000</td>
<td>MG/L</td>
<td>0.500</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00900</td>
<td>HARDNESS (TOTAL) AS CACO3</td>
<td>413.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>71830</td>
<td>HYDROXIDE ALKALINITY</td>
<td>10.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01045</td>
<td>IRON</td>
<td>210.0000</td>
<td>UG/L</td>
<td>300.000</td>
<td>100.000</td>
<td>2014/09/03</td>
<td>108</td>
<td>2023/09</td>
<td></td>
</tr>
<tr>
<td>00927</td>
<td>MAGNESIUM</td>
<td>30.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01055</td>
<td>MANGANESE</td>
<td>310.0000</td>
<td>UG/L</td>
<td>50.000</td>
<td>20.000</td>
<td>2014/09/03</td>
<td>108</td>
<td>2023/09</td>
<td></td>
</tr>
<tr>
<td>00086</td>
<td>ODOR THRESHOLD @ 60 C</td>
<td>1.0000</td>
<td>TON</td>
<td>3.000</td>
<td>1.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00403</td>
<td>PH, LABORATORY</td>
<td>7.8000</td>
<td></td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01077</td>
<td>SILVER</td>
<td>1.0000</td>
<td>UG/L</td>
<td>100.000</td>
<td>10.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00929</td>
<td>SODIUM</td>
<td>57.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00095</td>
<td>SPECIFIC CONDUCTANCE</td>
<td>989.0000</td>
<td>US</td>
<td>1600.000</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00945</td>
<td>SULFATE</td>
<td>126.0000</td>
<td>MG/L</td>
<td>500.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>70300</td>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>650.0000</td>
<td>MG/L</td>
<td>1000.000</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>82079</td>
<td>TURBIDITY, LABORATORY</td>
<td>1.8000</td>
<td>NTU</td>
<td>5.000</td>
<td>0.100</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01092</td>
<td>ZINC</td>
<td>20.0000</td>
<td>UG/L</td>
<td>500.000</td>
<td>50.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>INORGANIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01105</td>
<td>ALUMINUM</td>
<td>20.0000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>50.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01097</td>
<td>ANTIMONY</td>
<td>1.0000</td>
<td>UG/L</td>
<td>6.000</td>
<td>6.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01002</td>
<td>ARSENIC</td>
<td>2.0000</td>
<td>UG/L</td>
<td>10.000</td>
<td>2.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>81855</td>
<td>ASBESTOS</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>108</td>
<td>2015/10 DUE NOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01007</td>
<td>BARIUM</td>
<td>63.2000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>100.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01012</td>
<td>BERYLLIUM</td>
<td>1.0000</td>
<td>UG/L</td>
<td>4.000</td>
<td>1.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01027</td>
<td>CADMIUM</td>
<td>.2000</td>
<td>UG/L</td>
<td>5.000</td>
<td>1.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01034</td>
<td>CHROMIUM (TOTAL)</td>
<td>2.0000</td>
<td>UG/L</td>
<td>50.000</td>
<td>10.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONTHS</td>
<td>NEXT SAMPLE DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>01032</td>
<td>CHROMIUM, HEXAVALENT</td>
<td>.0000</td>
<td>UG/L</td>
<td>------</td>
<td>------</td>
<td>2002/07/01</td>
<td>108</td>
<td>2011/07</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>00951</td>
<td>FLUORIDE (F) (NATURAL-SOURCE)</td>
<td>.2000</td>
<td>MG/L</td>
<td>2.000</td>
<td>0.100</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01051</td>
<td>LEAD</td>
<td>.6000</td>
<td>UG/L</td>
<td>------</td>
<td>5.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>71900</td>
<td>MERCURY</td>
<td>.0200</td>
<td>UG/L</td>
<td>2.000</td>
<td>1.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01067</td>
<td>NICKEL</td>
<td>1.0000</td>
<td>UG/L</td>
<td>100.000</td>
<td>10.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>A-031</td>
<td>PERCHLORATE</td>
<td>2.0000</td>
<td>UG/L</td>
<td>6.000</td>
<td>4.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01147</td>
<td>SELENIUM</td>
<td>3.0000</td>
<td>UG/L</td>
<td>50.000</td>
<td>5.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01059</td>
<td>THALLIUM</td>
<td>.2000</td>
<td>UG/L</td>
<td>2.000</td>
<td>1.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>00618</td>
<td>NITRATE (as N)</td>
<td></td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td>12</td>
<td>2015/10</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>71850</td>
<td>NITRATE (AS NO3)</td>
<td>32.4000</td>
<td>MG/L</td>
<td>45.000</td>
<td>2.000</td>
<td>2014/09/03</td>
<td>12</td>
<td>2015/09</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>00620</td>
<td>NITRITE (AS N)</td>
<td>.1000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>400.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>01501</td>
<td>GROSS ALPHA</td>
<td>.0000</td>
<td>PCI/L</td>
<td>15.000</td>
<td>3.000</td>
<td>2004/06/02</td>
<td>108</td>
<td>2013/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34506</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>200.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34516</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34511</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34496</td>
<td>1,1-DICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34501</td>
<td>1,1-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>6.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34551</td>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34536</td>
<td>1,2-DICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>600.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34531</td>
<td>1,2-DICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34541</td>
<td>1,2-DICHLOROPROPAINE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34561</td>
<td>1,3-DICHLOROPROPENE (TOTAL)</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2009/06/01</td>
<td>108</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34571</td>
<td>1,4-DICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34030</td>
<td>BENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>32102</td>
<td>CARBON TETRACHLORIDE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>77093</td>
<td>CIS-1,2-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>6.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34423</td>
<td>DICHLOROMETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34371</td>
<td>ETHYLBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>300.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONT HS</td>
<td>NEXT SAMPLE DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001-004</td>
<td>S1 46491 METHYL-TERT-BUTYL-ETHER (MTBE)</td>
<td>1.0000</td>
<td>UG/L</td>
<td>13.00</td>
<td>3.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34301</td>
<td>MONOCHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>70.00</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>77128</td>
<td>STYRENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>100.00</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34475</td>
<td>TETRACHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34010</td>
<td>TOLUENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>150.00</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34546</td>
<td>TRANS-1,2-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>10.00</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>39180</td>
<td>TRICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>34488</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>150.00</td>
<td>5.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>81611</td>
<td>TRICHLOROTRIFLUOROETHANE (FREON 113)</td>
<td>.5000</td>
<td>UG/L</td>
<td>1200.00</td>
<td>10.000</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>39175</td>
<td>VINYL CHLORIDE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>81551</td>
<td>XYLENES (TOTAL)</td>
<td>.5000</td>
<td>UG/L</td>
<td>1750.00</td>
<td>------</td>
<td>2012/06/11</td>
<td>108</td>
<td>2021/06</td>
<td></td>
</tr>
<tr>
<td>S2 REGULATED SOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39033</td>
<td>ATRAZINE</td>
<td>.0000</td>
<td>UG/L</td>
<td>3.000</td>
<td>1.000</td>
<td>2003/06/02</td>
<td>108</td>
<td>2012/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>39055</td>
<td>SIMAZINE</td>
<td>.0000</td>
<td>UG/L</td>
<td>4.000</td>
<td>1.000</td>
<td>2003/06/02</td>
<td>108</td>
<td>2012/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>INVENTORY DATE</td>
<td>FREQUENCY MONT HS</td>
<td>NEXT SAMPL E DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>BICARBONATE ALKALINITY</td>
<td>280.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>CALCIUM</td>
<td>108.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>CARBONATE ALKALINITY</td>
<td>10.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>CHLORIDE</td>
<td>30.0000</td>
<td>MG/L</td>
<td>500.000</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>COLOR</td>
<td>5.0000</td>
<td>UNITS</td>
<td>15.000</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>COPPER</td>
<td>10.0000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>50.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>FOAMING AGENTS (MBAS)</td>
<td>.1000</td>
<td>MG/L</td>
<td>0.500</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>HARDNESS (TOTAL) AS CACO3</td>
<td>385.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>HYDROXIDE ALKALINITY</td>
<td>10.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>IRON</td>
<td>50.0000</td>
<td>UG/L</td>
<td>300.000</td>
<td>100.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>MAGNESIUM</td>
<td>28.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>MANGANESE</td>
<td>10.0000</td>
<td>UG/L</td>
<td>50.000</td>
<td>20.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>ODOUR THRESHOLD @ 60 C</td>
<td>1.0000</td>
<td>TON</td>
<td>3.000</td>
<td>1.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>pH, LABORATORY</td>
<td>7.8000</td>
<td></td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>SILVER</td>
<td>1.0000</td>
<td>UG/L</td>
<td>100.000</td>
<td>10.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>SODIUM</td>
<td>38.0000</td>
<td>MG/L</td>
<td>------</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>SPECIFIC CONDUCTANCE</td>
<td>867.0000</td>
<td>US</td>
<td>1600.000</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>SULFATE</td>
<td>136.0000</td>
<td>MG/L</td>
<td>500.000</td>
<td>0.500</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>590.0000</td>
<td>MG/L</td>
<td>1000.000</td>
<td>------</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>TURBIDITY, LABORATORY</td>
<td>.3000</td>
<td>NTU</td>
<td>5.000</td>
<td>0.100</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>ZINC</td>
<td>20.0000</td>
<td>UG/L</td>
<td>5000.000</td>
<td>50.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>ALUMINUM</td>
<td>10.0000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>50.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>ANTIMONY</td>
<td>1.0000</td>
<td>UG/L</td>
<td>6.000</td>
<td>6.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>ARSENIC</td>
<td>2.0000</td>
<td>UG/L</td>
<td>10.000</td>
<td>2.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>ASBESTOS</td>
<td>.0000</td>
<td>MFL</td>
<td>7.000</td>
<td>0.200</td>
<td>2006/07/10</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>BARIUM</td>
<td>37.1000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>100.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>BERYLLIUM</td>
<td>1.0000</td>
<td>UG/L</td>
<td>4.000</td>
<td>1.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>CADMIUM</td>
<td>.2000</td>
<td>UG/L</td>
<td>5.000</td>
<td>1.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>4210001 - 006</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>006</td>
<td>SMILLIE</td>
<td>CHROMIUM (TOTAL)</td>
<td>1.0000</td>
<td>UG/L</td>
<td>50.000</td>
<td>10.000</td>
<td>2012/06/11</td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONTHS</td>
<td>NEXT SAMPL E DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>4210001</td>
<td>INORGANIC CHROMIUM, HEXAVALENT</td>
<td>.0000</td>
<td>UG/L</td>
<td>------</td>
<td>------</td>
<td>2002/07/01</td>
<td>36</td>
<td>2005/07</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>00951</td>
<td>FLUORIDE (F) (NATURAL-SOURCE)</td>
<td>.1000</td>
<td>MG/L</td>
<td>2.000</td>
<td>0.100</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>01051</td>
<td>LEAD</td>
<td>.2000</td>
<td>UG/L</td>
<td>------</td>
<td>5.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>71900</td>
<td>MERCURY</td>
<td>.0200</td>
<td>UG/L</td>
<td>2.000</td>
<td>1.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>01067</td>
<td>NICKEL</td>
<td>1.000</td>
<td>UG/L</td>
<td>100.000</td>
<td>10.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>A-031</td>
<td>PERCHLORATE</td>
<td>2.0000</td>
<td>UG/L</td>
<td>6.000</td>
<td>4.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>01147</td>
<td>SELENIUM</td>
<td>2.000</td>
<td>UG/L</td>
<td>50.000</td>
<td>5.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>01059</td>
<td>THALLIUM</td>
<td>.2000</td>
<td>UG/L</td>
<td>2.000</td>
<td>1.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>00618</td>
<td>Nitrate (as N)</td>
<td></td>
<td></td>
<td>------</td>
<td>------</td>
<td>12</td>
<td>2015/10</td>
<td>DUE NOW</td>
<td></td>
</tr>
<tr>
<td>71850</td>
<td>NITRATE (AS NO3)</td>
<td>13.6000</td>
<td>MG/L</td>
<td>45.000</td>
<td>2.000</td>
<td>2012/06/11</td>
<td>12</td>
<td>2013/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>01147</td>
<td>NITRITE (AS N)</td>
<td>.1000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>400.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>01501</td>
<td>GROSS ALPHA</td>
<td>.0000</td>
<td>PCI/L</td>
<td>15.000</td>
<td>3.000</td>
<td>2004/06/02</td>
<td>108</td>
<td>2013/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34506</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>200.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34516</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34511</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34496</td>
<td>1,1-DICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34501</td>
<td>1,1-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>6.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34551</td>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34536</td>
<td>1,2-DICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>600.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34531</td>
<td>1,2-DICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34541</td>
<td>1,2-DICHLOROPROPANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34561</td>
<td>1,3-DICHLOROPROPENE (TOTAL)</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2009/06/01</td>
<td>36</td>
<td>2012/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34571</td>
<td>1,4-DICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34030</td>
<td>BENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>32102</td>
<td>CARBON TETRACHLORIDE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>77093</td>
<td>CIS-1,2-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>6.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34423</td>
<td>DICHLOROMETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34371</td>
<td>ETHYLBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>300.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONTHS</td>
<td>NEXT SAMPLE E DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>4210001</td>
<td>METHYL-TERT-BUTYL-ETHER (MTBE)</td>
<td>1.0000</td>
<td>UG/L</td>
<td>13.000</td>
<td>3.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34301</td>
<td>MONOCHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>70.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>77128</td>
<td>STYRENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>100.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34475</td>
<td>TETRACHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34010</td>
<td>TOLUENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>150.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34546</td>
<td>TRANS-1,2-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>10.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>39180</td>
<td>TRICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34488</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>150.000</td>
<td>5.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>81611</td>
<td>TRICHLOROTRIFLUOROETHANE (FREON 113)</td>
<td>.5000</td>
<td>UG/L</td>
<td>1200.000</td>
<td>10.000</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>39175</td>
<td>VINYL CHLORIDE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>81551</td>
<td>XYLENES (TOTAL)</td>
<td>.5000</td>
<td>UG/L</td>
<td>1750.000</td>
<td>------</td>
<td>2012/06/11</td>
<td>36</td>
<td>2015/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>S2</td>
<td>REGULATED SOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39033</td>
<td>ATRAZINE</td>
<td>.5000</td>
<td>UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2006/07/10</td>
<td>108</td>
<td>2015/07</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>39055</td>
<td>SIMAZINE</td>
<td>1.0000</td>
<td>UG/L</td>
<td>4.000</td>
<td>1.000</td>
<td>2006/07/10</td>
<td>108</td>
<td>2015/07</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONT HS</td>
<td>NEXT SAMPL E DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>015</td>
<td>HEADQUARTERS WELL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>4210001</td>
<td>00440</td>
<td>BICARBONATE ALKALINITY</td>
<td>320.0000</td>
<td>MG/L</td>
<td>--------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00916</td>
<td>CALCIUM</td>
<td>102.0000</td>
<td>MG/L</td>
<td>--------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00445</td>
<td>CARBONATE ALKALINITY</td>
<td>10.0000</td>
<td>MG/L</td>
<td>--------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00940</td>
<td>CHLORIDE</td>
<td>44.0000</td>
<td>MG/L</td>
<td>500.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00081</td>
<td>COLOR</td>
<td>5.0000</td>
<td>UNITS</td>
<td>15.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01042</td>
<td>COPPER</td>
<td>10.0000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38260</td>
<td>FOAMING AGENTS (MBAS)</td>
<td>.1000</td>
<td>MG/L</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00900</td>
<td>HARDNESS (TOTAL) AS CACO3</td>
<td>366.0000</td>
<td>MG/L</td>
<td>--------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71830</td>
<td>HYDROXIDE ALKALINITY</td>
<td>10.0000</td>
<td>MG/L</td>
<td>--------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01045</td>
<td>IRON</td>
<td>30</td>
<td>UG/L</td>
<td>300.000</td>
<td>2015/11/04</td>
<td>36</td>
<td>2018/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00927</td>
<td>MAGNESIUM</td>
<td>27.0000</td>
<td>MG/L</td>
<td>--------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01055</td>
<td>MANGANESE</td>
<td>90</td>
<td>UG/L</td>
<td>50.000</td>
<td>2015/11/04</td>
<td>36</td>
<td>2018/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00086</td>
<td>ODOR THRESHOLD @ 60 C</td>
<td>1.0000</td>
<td>TON</td>
<td>3.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00403</td>
<td>PH, LABORATORY</td>
<td>7.6000</td>
<td></td>
<td></td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01077</td>
<td>SILVER</td>
<td>1.0000</td>
<td>UG/L</td>
<td>100.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00929</td>
<td>SODIUM</td>
<td>53.0000</td>
<td>MG/L</td>
<td>--------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00095</td>
<td>SPECIFIC CONDUCTANCE</td>
<td>869.0000</td>
<td>US</td>
<td>1600.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00945</td>
<td>SULFATE</td>
<td>116.0000</td>
<td>MG/L</td>
<td>500.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70300</td>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>580.0000</td>
<td>MG/L</td>
<td>1000.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82079</td>
<td>TURBIDITY, LABORATORY</td>
<td>.2000</td>
<td>NTU</td>
<td>5.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01092</td>
<td>ZINC</td>
<td>20.0000</td>
<td>UG/L</td>
<td>5000.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td>IO</td>
<td></td>
<td>01105</td>
<td>ALUMINUM</td>
<td>10.0000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01097</td>
<td>ANTIMONY</td>
<td>1.0000</td>
<td>UG/L</td>
<td>6.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01002</td>
<td>ARSENIC</td>
<td>2.0000</td>
<td>UG/L</td>
<td>10.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81855</td>
<td>ASBESTOS</td>
<td>.0000</td>
<td>MFL</td>
<td>7.000</td>
<td>2006/07/10</td>
<td>108</td>
<td>2015/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01007</td>
<td>BARIUM</td>
<td>64.0000</td>
<td>UG/L</td>
<td>1000.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01012</td>
<td>BERYLLIUM</td>
<td>1.0000</td>
<td>UG/L</td>
<td>4.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01027</td>
<td>CADMIUM</td>
<td>.2000</td>
<td>UG/L</td>
<td>5.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01034</td>
<td>CHROMIUM (TOTAL)</td>
<td>1.0000</td>
<td>UG/L</td>
<td>50.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONTHS</td>
<td>NEXT SAMPLE DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>4210001</td>
<td>INORGANIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01032</td>
<td>CHROMIUM, HEXAVALENT</td>
<td>.3000</td>
<td>MG/L</td>
<td>2.00</td>
<td>0.100</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>00951</td>
<td>FLUORIDE (F) (NATURAL-SOURCE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01051</td>
<td>LEAD</td>
<td>.5000</td>
<td>UG/L</td>
<td></td>
<td></td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>71900</td>
<td>MERCURY</td>
<td>.0200</td>
<td>UG/L</td>
<td>2.00</td>
<td>1.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>01067</td>
<td>NICKEL</td>
<td>1.0000</td>
<td>UG/L</td>
<td>100.00</td>
<td>10.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>01147</td>
<td>SELENIUM</td>
<td>1.0000</td>
<td>UG/L</td>
<td>50.000</td>
<td>5.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>01059</td>
<td>THALLIUM</td>
<td>.2000</td>
<td>UG/L</td>
<td>2.000</td>
<td></td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>00618</td>
<td>NITRATE/NITRITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71850</td>
<td>NITRATE (AS NO3)</td>
<td>18.4000</td>
<td>MG/L</td>
<td>45.000</td>
<td>2.000</td>
<td>2015/06/01</td>
<td>12</td>
<td>2016/06</td>
<td></td>
</tr>
<tr>
<td>00620</td>
<td>NITRITE (AS N)</td>
<td>.2000</td>
<td>UG/L</td>
<td>1000.00</td>
<td>400.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>01501</td>
<td>GROSS ALPHA</td>
<td>.0000</td>
<td>PCI/L</td>
<td>15.000</td>
<td>3.000</td>
<td>2006/11/06</td>
<td>108</td>
<td>2015/11</td>
<td>DUE NOW</td>
</tr>
<tr>
<td>34506</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>200.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34516</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34511</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34496</td>
<td>1,1-DICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34501</td>
<td>1,1-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>6.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34551</td>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34536</td>
<td>1,2-DICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>600.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34531</td>
<td>1,2-DICHLOROETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34541</td>
<td>1,2-DICHLOROPROPAINE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34561</td>
<td>1,3-DICHLOROPROPENE (TOTAL)</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34571</td>
<td>1,4-DICHLOROBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34030</td>
<td>BENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>32102</td>
<td>CARBON TETRACHLORIDE</td>
<td>.5000</td>
<td>UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>77093</td>
<td>CIS-1,2-DICHLOROETHYLENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>6.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34423</td>
<td>DICHLOROMETHANE</td>
<td>.5000</td>
<td>UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>34371</td>
<td>ETHYLBENZENE</td>
<td>.5000</td>
<td>UG/L</td>
<td>300.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONT HS</td>
<td>NEXT SAMP E DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001-015</td>
<td>S1 46491 METHYL-TERT-BUTYL-ETHER (MTBE)</td>
<td>1.0000 UG/L</td>
<td>13.000</td>
<td>3.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34301 MONOCHLOROBENZENE</td>
<td>.5000 UG/L</td>
<td>70.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77128 STYRENE</td>
<td>.5000 UG/L</td>
<td>100.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34475 TETRACHLOROETHYLENE</td>
<td>.5000 UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34010 TOLENE</td>
<td>.5000 UG/L</td>
<td>150.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34546 TRANS-1,2-DICHLOROETHYLENE</td>
<td>.5000 UG/L</td>
<td>10.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39180 TRICHLOROETHYLENE</td>
<td>.5000 UG/L</td>
<td>5.000</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34488 TRICHLOROFLUOROMETHANE</td>
<td>.5000 UG/L</td>
<td>150.000</td>
<td>5.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81611 TRICHLOROTRIFLUOROETHANE (FREON 113)</td>
<td>.5000 UG/L</td>
<td>1200.000</td>
<td>10.000</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39175 VINYL CHLORIDE</td>
<td>.5000 UG/L</td>
<td>0.500</td>
<td>0.500</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81551 XYLENES (TOTAL)</td>
<td>.5000 UG/L</td>
<td>1750.000</td>
<td>------</td>
<td>2015/06/01</td>
<td>36</td>
<td>2018/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2 REGULATED SOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39033 ATRAZINE</td>
<td>.5000 UG/L</td>
<td>1.000</td>
<td>0.500</td>
<td>2006/07/10</td>
<td>108</td>
<td>2015/07</td>
<td>DUE NOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39055 SIMAZINE</td>
<td>1.0000 UG/L</td>
<td>4.000</td>
<td>1.000</td>
<td>2006/07/10</td>
<td>108</td>
<td>2015/07</td>
<td>DUE NOW</td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONTS</td>
<td>NEXT SAMPLE DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001 - 017</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>017</td>
<td>STAGE-2: #1 GOBERNADOR CYN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82721</td>
<td>DIBROMOACETIC ACID (DBAA)</td>
<td>5</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>77288</td>
<td>DICHLOROACETIC ACID (DCAA)</td>
<td>4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>A-049</td>
<td>HALOACETIC ACIDS (5) (HAAS)</td>
<td>16</td>
<td>UG/L</td>
<td>60.000</td>
<td>------</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>A-041</td>
<td>MONOBROMOACETIC ACID (MBAA)</td>
<td>3</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>A-042</td>
<td>MONOCHLOROACETIC ACID (MCAA)</td>
<td>2</td>
<td>UG/L</td>
<td>------</td>
<td>2.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>82723</td>
<td>TRICHLOROACETIC ACID (TCAA)</td>
<td>4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>REGULATED SOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-001</td>
<td>THIOBENCARB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2015/10</td>
</tr>
<tr>
<td>TH</td>
<td>TRIHALOMETHANES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82080</td>
<td>TOTAL TRIHALOMETHANES</td>
<td>26.1</td>
<td>UG/L</td>
<td>80.000</td>
<td>------</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>STATE UCMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32101</td>
<td>BROMODICHLOROMETHANE (THM)</td>
<td>6.8</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>32104</td>
<td>BROMOFORM (THM)</td>
<td>5.5</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>32106</td>
<td>CHLOROFORM (THM)</td>
<td>3.4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>32105</td>
<td>DIBROMOCHLOROMETHANE (THM)</td>
<td>10.4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONT HS</td>
<td>NEXT SAMPLE E DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>018</td>
<td>STAGE-2: #2 SHEPARD MESA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(UNIDENTIFIED GROUP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82721</td>
<td>DIBROMOACETIC ACID (DBAA)</td>
<td>4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>77288</td>
<td>DICHLOROACETIC ACID (DCAA)</td>
<td>4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>A-049</td>
<td>HALOACETIC ACIDS (S) (HAAS)</td>
<td>15</td>
<td>UG/L</td>
<td>60.000</td>
<td>------</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>A-041</td>
<td>MONOBROMOACETIC ACID (MBAA)</td>
<td>3</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>A-042</td>
<td>MONOCHLOROACETIC ACID (MCAA)</td>
<td>2</td>
<td>UG/L</td>
<td>------</td>
<td>2.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>82723</td>
<td>TRICHLOROACETIC ACID (TCAA)</td>
<td>4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>REGULATED SOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-001</td>
<td>THIOBENCARB</td>
<td></td>
<td>------</td>
<td>------</td>
<td></td>
<td>2015/10</td>
<td>DUE NOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>TRIHALOMETHANES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82080</td>
<td>TOTAL TRIHALOMETHANES</td>
<td>39.0</td>
<td>UG/L</td>
<td>80.000</td>
<td>------</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>STATE UCMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32101</td>
<td>BROMODICHLOROMETHANE (THM)</td>
<td>10.5</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>32104</td>
<td>BROMOFORM (THM)</td>
<td>7.6</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>32106</td>
<td>CHLOROFORM (THM)</td>
<td>5.4</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>32105</td>
<td>DIBROMOCHLOROMETHANE (THM)</td>
<td>15.5</td>
<td>UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONT HS</td>
<td>NEXT SAMPLE</td>
<td>NOTES</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001 - 019</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>019</td>
<td>STAGE-2: #3 CASITAS PASS RD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82721</td>
<td>DIBROMOACETIC ACID (DBAA)</td>
<td>1 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77288</td>
<td>DICHLOROACETIC ACID (DCAA)</td>
<td>1 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-049</td>
<td>HALOACETIC ACIDS (5) (HAAS)</td>
<td>1 UG/L</td>
<td>60.000</td>
<td>------</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-041</td>
<td>MONOBROMOACETIC ACID (MBAA)</td>
<td>1 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-042</td>
<td>MONOCHLOROACETIC ACID (MCAA)</td>
<td>2 UG/L</td>
<td>------</td>
<td>2.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82723</td>
<td>TRICHLOROACETIC ACID (TCAA)</td>
<td>1 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>REGULATED SOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-001</td>
<td>THIOBENCARB</td>
<td></td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>TRIHALOMETHANES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82080</td>
<td>TOTAL TRIHALOMETHANES</td>
<td>13.9 UG/L</td>
<td>80.000</td>
<td>------</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>STATE UCMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32101</td>
<td>BROMODICHLOROMETHANE (THM)</td>
<td>2.3 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32104</td>
<td>BROMOFORM (THM)</td>
<td>5.5 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32106</td>
<td>CHLOROFORM (THM)</td>
<td>1.4 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32105</td>
<td>DIBROMOCHLOROMETHANE (THM)</td>
<td>4.7 UG/L</td>
<td>------</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST RESULT</td>
<td>UNITS</td>
<td>MCL</td>
<td>DLR</td>
<td>LAST SAMPLE</td>
<td>FREQ MONT HS</td>
<td>NEXT SAMPL E DUE</td>
<td>NOTES</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>4210001</td>
<td>CARPINTERIA VALLEY WATER DISTRICT</td>
<td>020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82721</td>
<td>DIBROMOACETIC ACID (DBAA)</td>
<td>1</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77288</td>
<td>DICHLOROACETIC ACID (DCAA)</td>
<td>1</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-049</td>
<td>HALOACETIC ACIDS (5) (HAAS)</td>
<td>1</td>
<td>UG/L</td>
<td>60.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-041</td>
<td>MONOBROMOACETIC ACID (MBAA)</td>
<td>1</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-042</td>
<td>MONOCHLOROACETIC ACID (MCAA)</td>
<td>2</td>
<td>UG/L</td>
<td>2.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82723</td>
<td>TRICHLOROACETIC ACID (TCAA)</td>
<td>1</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>REGULATED SOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-001</td>
<td>THIOBENCARB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>TRIHALOMETHANES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82080</td>
<td>TOTAL TRIHALOMETHANES</td>
<td>11.9</td>
<td>UG/L</td>
<td>80.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>STATE UCMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32101</td>
<td>BROMODICHLOROMETHANE (THM)</td>
<td>2.3</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32104</td>
<td>BROMOFORM (THM)</td>
<td>3.4</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32106</td>
<td>CHLOROFORM (THM)</td>
<td>1.5</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32105</td>
<td>DIBROMOCHLOROMETHANE (THM)</td>
<td>4.7</td>
<td>UG/L</td>
<td>1.000</td>
<td>2015/11/02</td>
<td>3</td>
<td>2016/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST SAMPLE</td>
<td>COUNT</td>
<td>MODIFIED SCHEDULE</td>
<td>NEXT SAMPLE DUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4210010003</td>
<td>CITY OF SANTA BARBARA WATER DEPARTMENT</td>
<td>003</td>
<td>CATER TREATMENT PLANT RAW</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>AGGRESSIVE INDEX (CORROSIVITY)</td>
<td>2015/11/10</td>
<td>13</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00440</td>
<td>BICARBONATE ALKALINITY</td>
<td>2015/11/10</td>
<td>19</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00916</td>
<td>CALCIUM</td>
<td>2015/11/10</td>
<td>43</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00445</td>
<td>CARBONATE ALKALINITY</td>
<td>2015/11/10</td>
<td>19</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00940</td>
<td>CHLORIDE</td>
<td>2015/11/10</td>
<td>44</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00081</td>
<td>COLOR</td>
<td>2015/11/10</td>
<td>44</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01042</td>
<td>COPPER</td>
<td>2016/01/12</td>
<td>47</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38260</td>
<td>FOAMING AGENTS (MBAS)</td>
<td>2015/11/10</td>
<td>21</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00900</td>
<td>HARDNESS (TOTAL) AS CACO3</td>
<td>2015/11/10</td>
<td>43</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71830</td>
<td>HYDROXIDE ALKALINITY</td>
<td>2015/11/10</td>
<td>19</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01045</td>
<td>IRON</td>
<td>2016/01/12</td>
<td>48</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00927</td>
<td>MAGNESIUM</td>
<td>2016/01/12</td>
<td>45</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01055</td>
<td>MANGANESE</td>
<td>2016/01/12</td>
<td>46</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00086</td>
<td>ODOR THRESHOLD @ 60 C</td>
<td>2015/11/10</td>
<td>42</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00403</td>
<td>PH, LABORATORY</td>
<td>2015/11/10</td>
<td>43</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01077</td>
<td>SILVER</td>
<td>2015/11/10</td>
<td>21</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00929</td>
<td>SODIUM</td>
<td>2016/01/12</td>
<td>47</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00095</td>
<td>SPECIFIC CONDUCTANCE</td>
<td>2015/11/10</td>
<td>44</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00945</td>
<td>SULFATE</td>
<td>2015/11/10</td>
<td>44</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70300</td>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>2015/11/10</td>
<td>44</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82079</td>
<td>TURBIDITY, LABORATORY</td>
<td>2015/11/10</td>
<td>43</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01092</td>
<td>ZINC</td>
<td>2016/01/12</td>
<td>46</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>INORGANIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01105</td>
<td>ALUMINUM</td>
<td>2016/01/12</td>
<td>41</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01097</td>
<td>ANTIMONY</td>
<td>2015/11/10</td>
<td>19</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01002</td>
<td>ARSENIC</td>
<td>2016/01/12</td>
<td>39</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81855</td>
<td>ASBESTOS</td>
<td>2010/07/08</td>
<td>14</td>
<td>108</td>
<td>2019/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01007</td>
<td>BARIUM</td>
<td>2015/11/10</td>
<td>21</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01012</td>
<td>BERYLLIUM</td>
<td>2015/11/10</td>
<td>19</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01027</td>
<td>CADMIUM</td>
<td>2015/11/10</td>
<td>21</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST SAMPLE</td>
<td>COUNT</td>
<td>FREQ</td>
<td>MODIFIED SCHEDULE</td>
<td>NEXT SAMPLE DUE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4210010003</td>
<td>INORGANIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01034</td>
<td>CHROMIUM (TOTAL)</td>
<td>2016/01/12</td>
<td>36</td>
<td>12</td>
<td>2017/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01291</td>
<td>CYANIDE</td>
<td>2015/11/10</td>
<td>18</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00951</td>
<td>FLUORIDE (F) (NATURAL-SOURCE)</td>
<td>2015/11/10</td>
<td>38</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01051</td>
<td>LEAD</td>
<td>2015/11/10</td>
<td>21</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71900</td>
<td>MERCURY</td>
<td>2015/11/10</td>
<td>21</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01067</td>
<td>NICKEL</td>
<td>2015/11/10</td>
<td>19</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-031</td>
<td>PERCHLORATE</td>
<td>2015/11/10</td>
<td>14</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01147</td>
<td>SELENIUM</td>
<td>2015/11/10</td>
<td>21</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01059</td>
<td>THALLIUM</td>
<td>2015/11/10</td>
<td>19</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00618</td>
<td>NITRATE (as N)</td>
<td>2015/11/10</td>
<td>63</td>
<td>12</td>
<td>2016/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00620</td>
<td>NITRITE (AS N)</td>
<td>2015/11/10</td>
<td>53</td>
<td>36</td>
<td>2018/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIOLOGICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01501</td>
<td>GROSS ALPHA</td>
<td>2014/10/22</td>
<td>17</td>
<td>108</td>
<td>M</td>
<td>2023/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGULATED VOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34506</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34516</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34511</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34496</td>
<td>1,1-DICHLOROETHANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34501</td>
<td>1,1-DICHLOROETHYLENE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34551</td>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>2014/10/22</td>
<td>19</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34536</td>
<td>1,2-DICHLOROBENZENE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34531</td>
<td>1,2-DICHLOROETHANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34541</td>
<td>1,2-DICHLOROPROPAANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34561</td>
<td>1,3-DICHLOROPROPENE (TOTAL)</td>
<td>2014/10/22</td>
<td>19</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34571</td>
<td>1,4-DICHLOROBENZENE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34030</td>
<td>BENZENE</td>
<td>2014/10/22</td>
<td>24</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32102</td>
<td>CARBON TETRACHLORIDE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77093</td>
<td>CIS-1,2-DICHLOROETHYLENE</td>
<td>2014/10/22</td>
<td>19</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34423</td>
<td>DICHLOROMETHANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34371</td>
<td>ETHYL BENZENE</td>
<td>2014/10/22</td>
<td>24</td>
<td>36</td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSCODE</td>
<td>GROUP/CONSTITUENT IDENTIFICATION</td>
<td>LAST SAMPLE</td>
<td>COUNT</td>
<td>FREQ</td>
<td>MODIFIED SCHEDULE</td>
<td>NEXT SAMPLE DUE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4210010003</td>
<td>METHYL-TERT-BUTYL-ETHER (MTBE)</td>
<td>2014/10/22</td>
<td>33</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MONOCHLOROBENZENE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>2014/10/22</td>
<td>34</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>2014/10/22</td>
<td>23</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS-1,2-DICHLOROETHYLENE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHYLENE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROTRIFLUOROETHANE (FREON 113)</td>
<td>2014/10/22</td>
<td>19</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>2014/10/22</td>
<td>20</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XYLENES (TOTAL)</td>
<td>2014/10/22</td>
<td>23</td>
<td>36</td>
<td></td>
<td>2017/10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix H

Selected District Resolutions/Ordinances
ORDINANCE NO. 15-2
AN ORDINANCE OF THE BOARD OF THE DIRECTORS
OF THE CARPINTERIA VALLEY WATER DISTRICT AMENDING AND
SUPERSEDING ORDINANCE 15-1 AND DECLARING A STAGE TWO
DROUGHT CONDITION AND ESTABLISHING WATER USE REGULATIONS
TO BE EFFECTIVE DURING A STAGE TWO DROUGHT CONDITION

WHEREAS, the Board of Directors on January 31, 1990 approved Ordinance 90-1 Pertaining to Drought Regulations and Water Conservation Standards; and

WHEREAS, the Board of Directors on February 12, 2014 approved Resolution No. 972 Declaring a Stage One Drought Emergency; and

WHEREAS, the Board of Directors on August 13, 2014 approved Resolution No. 980 Implementing the State Water Resources Control Board's Drought Emergency Water Conservation Regulation; and

WHEREAS, the Board of Directors on October 8, 2014 adopted Ordinance No. 14-1 Consolidating Mandatory Water Conservation Requirements set forth in Ordinance No. 90-1, Resolutions No. 972 and 980, and Adding New Requirements and Establishing Enforcement Measures to Address a Drought Emergency; and

WHEREAS, the Board of Directors on January 14, 2015 adopted Ordinance No. 15-1 Consolidating Mandatory Water Conservation Requirements set forth in Ordinance 14-1, Ordinance No. 90-1, Resolutions No. 972 and 980, and Deleting the Suspension of District Rule No. 15a (Sections 4 and 5); and

WHEREAS, the State of California Office of Administrative Law on March 27, 2015 approved the emergency regulatory action approved by the State Water Resources Control Board on March 17, 2015 adopting expanded emergency regulations to safeguard the state’s remaining water supplies; and

WHEREAS, Governor Edmond G. Brown, on April 1, 2015 issued Executive Order B-29-15 proclaiming a State of Emergency, amending and extending orders and provisions contained in Executive Orders B-26-14 and B-28-14 due to the ongoing drought, California’s severely depleted water supplies and the possibility that the current drought will stretch into a fifth straight year in 2016 and beyond; and

WHEREAS, continued drought conditions have reduced local and state-wide water resources over 15% of average annual demand; and

WHEREAS, there currently exists the possibility of shortages within the District’s service area over 15% of average annual demand within the next 12 - 18 months; and
WHEREAS, the District is committed to achieving the Governor’s April 1, 2015 Executive Order B-29-15 for a statewide 25% reduction in urban potable water use through February of 2016; and

WHEREAS, the District is committed to achieving the District’s assigned conservation standard of 20% as required for Tier 5 urban water suppliers by the State Water Resources Control Board for each month as compared to the amount used in the same month in 2013, to prevent a possible reduction in District water supply such that there would be insufficient water for human consumption, sanitation and fire protection; and

WHEREAS, the District is required to implement the imposition of mandatory restrictions on outdoor irrigation pursuant to emergency regulations, Cal. Code Regs. Title 23 Sections 863, 846 and 865 adopted by the State Water Board on July 15, 2014; and amended on March 17, 2015; and

WHEREAS, California Water Code Section 31026 also authorizes the District to restrict use of water during any emergency caused by drought, and to prohibit the waste of water during such periods; and

WHEREAS, the District’s Water Shortage Contingency Plan provides that when the District determines that the water supply for the current or impending water year is anticipated to be approximately 15-30% less than projected normal demand a Stage Two shall be declared and such conditions now exist; and

WHEREAS, it is in the best interests of the customers of the District for the District to have regulations in place for the timely implementation of any future Water Shortage Emergency; and

WHEREAS, as the Board adopts this Ordinance, and finds that the restrictions set forth herein are necessary and proper to protect the water supply for human consumption, sanitation, and fire protection during Water Shortage emergencies, the Board also finds that the uses of water that are prohibited below are nonessential.

NOW THEREFORE BE IT ORDAINED, pursuant to Section 31026 of the Water Code, the Carpinteria Valley Water District prohibits the following:

a) running water from a hose, pipe, or any other device for the purpose of cleaning buildings and driveways or sidewalks except in the event the General Manager or designee determines that such use is the only feasible means of addressing a potential threat to health and safety;

b) washing of driveways and sidewalks except in the event the General Manager or designee determines that such use is the only feasible means of addressing a potential threat to health and safety;
c) irrigation of outdoor landscapes in a manner that causes runoff such that water flows onto adjacent property such as patios, decks or driveways, private and public walkways, roadways, parking lots, or structures;

d) use of a fountain or other decorative water feature except if a recirculating system is in place;

e) manual irrigation by hose or moveable sprinkler at any time from 10:00 a.m. to 4:00 p.m. of any yard, park, recreation area, or other area containing landscape vegetation;

f) outdoor irrigation through fixed irrigation systems, either manually or by timer controller at any time from 8:00 a.m. to 6:00 p.m., of any yard, park, recreation area, or other area containing landscape vegetation, except for testing system or repairing leaks;

g) irrigation of turf or ornamental landscapes during and forty-eight (48) hours following measurable rainfall;

h) irrigation of landscapes outside newly constructed homes and buildings that is not delivered by drip or micro-spray systems;

i) irrigation of ornamental turf on public street medians

j) free-flowing hoses for all uses. Automatic shut-off devices shall be attached on any hose or filling apparatus in use.

BE IT FURTHER ORDAINED that pursuant to Section 31026 of the Water Code, the Carpinteria Valley Water District restricts use of District water as follows:

a) All restaurants located within the Carpinteria Valley Water District that provide table and/or counter service shall post, in a conspicuous place, a Notice of Drought Condition as approved by the General Manager and shall refrain from serving water except upon specific request by a customer;

b) Boats and vehicles shall be washed only at commercial car washing facilities or by use of a bucket and/or hose equipped with a self-closing valve that requires operator pressure to activate the flow of water;

c) Breaks or leaks in any customer's plumbing shall be immediately repaired upon discovery. If repairs cannot be completed within seventy-two (72) hours of detection or within seventy-two (72) hours of notification by the District, water service to the property may be turned off by District staff to prevent water loss until such time the repair has been completed;

d) Operators of hotels, motels and other commercial lodging establishments located within the Carpinteria Valley Water District shall post in each room a notice of
drought conditions containing water conservation information and a separate notice with language similar to the following:

"This area is suffering a Drought emergency. If you wish to have your sheets changed while you are staying, please leave this notice on your pillow. If you would like your towels changed, please leave them on the floor. Housekeeping will be pleased to accommodate you."

e) Operators of pools, exercise facilities and other similar establishments providing showering facilities shall promote limitation of showering time and post a Notice of Drought Condition;

f) Draining and refilling up to one third of the volume of a pool per year is allowed as necessary to maintain suitable pool water quality. Draining and refilling in excess of one third per year is prohibited, except in the event the General Manager or designee determines that such further draining is required to make needed repairs, or to prevent equipment damage or voiding of warranties;

g) Commercial, Industrial, and Public Authority properties, such as campuses, golf courses, driving ranges, and cemeteries, immediately implement water efficiency measures to reduce potable water usage by 25% for each month as compared to the amount used in the same month in 2013.

h) Landscape irrigation by Residential, Commercial, Public Authority and Industrial customers shall be limited to no more than two (2) days a week.

BE IT FURTHER ORDAINED that pursuant to Governor Brown’s Executive Order B-29-15, the Carpinteria Valley Water District restricts the following uses of non-District water:

Commercial, Industrial, and Public Authority facilities with an independent non-District source of water supply shall limit outdoor irrigation to no more than two days per week.

BE IT FURTHER ORDAINED that increasingly significant administrative penalties to create a disincentive to commit future violations of the aforementioned District potable water and non-District water use prohibitions and restrictions, shall be:

a) a letter to the District customer of record indicating a violation of one or more of the aforementioned water use prohibitions or restrictions; and

b) a letter to the District customer of record indicating a second violation of one or more of the aforementioned water use prohibitions or restrictions and a fine of twenty-five dollars ($25.00) added to the customer's next bill for the second offense;
c) a letter to the District customer of record indicating a third violation of one or more of the aforementioned water use prohibitions or restrictions and a fine of one hundred dollars ($100.00) added to the customer's next bill for the third; and

d) a letter to the District customer of record indicating additional incidences of violation of one or more of the aforementioned water use prohibitions or restrictions and further fines with a limit up to five hundred dollars ($500.00) for each day a violation occurs at the discretion of the Board of Directors.

BE IT FURTHER ORDAINED that a customer, in accordance with District Rules and Regulations may appeal the imposition of a monetary penalty by submitting a letter to the District within seven (7) days of the District's mailing of a notice of violation; and

BE IT FURTHER ORDAINED that a customer, in accordance with District Rules and Regulations, may appeal the General Manager's or Assistant General Manager's rejection of the appeal by submitting a letter to the Board of Directors within seven (7) days of the General Manager's or Assistant General Manager's rejection of said appeal.

BE IT FURTHER ORDAINED that to the extent that the terms and provisions of this Ordinance are inconsistent or in conflict with the terms and provisions of any prior District ordinance, resolution, rule or regulation, the terms of this Ordinance shall prevail, and inconsistent and conflicting provisions of prior ordinances, resolutions, rules and regulations shall be suspended during the effective period of this Ordinance.

BE IT FURTHER ORDAINED that in the event the State adopts mandatory water conservation measures requiring implementation by the District during a water shortage emergency, and such State mandate measures require additional water conservation actions beyond the District's currently enforceable conservation measures, such State-mandated measures shall automatically be deemed to be fully incorporated and part of this Ordinance and enforceable by the District.

BE IT FURTHER ORDAINED that if any section, subsection, sentence, clause or phrase of this Ordinance is for any reason held to be unconstitutional or invalid, such decision shall not affect the validity of the remaining portions of this ordinance. The Board hereby declares that it would have passed this Ordinance and each section, subsection, sentence, clause or phrase thereof irrespective of the fact that any one or more sections, subsections, sentences, clauses or phrases be unconstitutional or invalid.

BE IT FURTHER ORDAINED that this Ordinance is an urgency ordinance. It is necessary that the restrictions set forth in this Ordinance be adopted as set forth herein in order to protect the supply of water for human consumption, sanitation and fire protection.
BE IT FURTHER ORDAINED that this Ordinance shall take effect on May 13, 2015 and terminate on July 1, 2016.

Vote on Ordinance No. 15-2 by roll call resulted as follows:

AYES: Forde, Holcombe, Orozco, Roberts, Van Wingerden
NOES: none
ABSENT: none
ABSTAIN: none

PASSED AND ADOPTED by the Board of Directors of the Carpinteria Valley Water District, this 13th day of May, 2015.

APPROVED:

Alonzo Orozco, President

ATTEST:

Charles B. Hamilton, Secretary
Appendix II

RESOLUTION NO. 547

RESOLUTION OF THE BOARD OF DIRECTORS
CARPINTERIA COUNTY WATER DISTRICT
DECLARATION OF WATER SHORTAGE EMERGENCY

WHEREAS, the CARPINTERIA COUNTY WATER DISTRICT is a
County Water District organized and existing under the laws of the
State of California, situated and serving an area entirely within
the County of Santa Barbara, State of California; and

WHEREAS, this District provides water service for
agricultural, commercial, industrial, recreational and domestic
use within the District; and

WHEREAS, the water supplies currently available to this
District for distribution to its customers on an annual basis
(including calendar year 1990) is as follows:

(1) The basic contractual entitlement
 from the Cachuma Project for the
current contract year is: 3,300 acre feet
Less a 45% reduction because of
 the drought. - 1,485 acre feet
 net 1,815

(2) Well production from the under-
 ground (approximate) for three
 existing District wells. 3,500 acre feet
Total (approximate) 5,315 acre feet

and;

WHEREAS, the total consumer demand that was delivered
during calendar year 1989 was 6,280 acre feet; and

WHEREAS, said demand is estimated and projected to reach
approximately 6,500 acre feet at the end of the 1989-90 Cachuma
Water Year (May 15, 1989 - May 14, 1990) because of continuing
drought conditions; and

WHEREAS, this District will probably be required to
transfer approximately 260 acre feet to other Districts during the
coming water year; and
WHEREAS, based on available supplies and estimated demand, this District is faced with an estimated and projected water shortage deficit for calendar year 1990 of approximately 1225 acre feet; and

WHEREAS, studies show that the safe yield of the underground basin is approximately 5,000 acre feet and private pumping will be at an estimated rate of approximately 1,200 acre feet per year. And, whereas the District plans to place into production the newly completed High School Franklin Well and plans to drill an additional well, the total yield of these wells is subject to contingencies not under the exclusive control of the District, and for this reason this program might not be able to produce the additional water required by this District to meet future demand; and

WHEREAS, in the best interests of the health and safety of the residents and water consumers of this District, it is necessary to establish water use regulations until such time as the District's available water supplies are augmented to an extent sufficient to meet projected demands; and

WHEREAS, unless the District is able to develop and/or contract for supplemental sources of water, immediate mandatory conservation, and possible future rationing, must be instituted for the District as a continuing procedure; and

WHEREAS, notice of time and place of a public hearing by this Board of Directors was duly given and published, and at said hearing on January 31, 1990, consumers of the District's water supply were given an opportunity to be heard to protest against a declaration that a water shortage emergency condition prevails within the District and given the opportunity to present their respective needs to the Board of Directors of this District, and said protests and presentations have been duly received and considered by the Board of Directors;

NOW, THEREFORE, THE BOARD OF DIRECTORS OF THE CARPINTERIA COUNTY WATER DISTRICT HEREBY FINDS, DETERMINES, DECLARES AND RESOLVES AS FOLLOWS:
1. For all of the reasons set forth in the recitals above, a water shortage emergency condition prevails within the area served by this District, which emergency is caused by an existing and a threatened continuing water shortage as defined in Sections 350 and 31026 of the Water Code;

2. The ordinary demands and requirements of water consumers cannot be satisfied without depleting the water supply of this District to the extent that there would be insufficient water for human consumption, sanitation and fire protection;

3. Because of said emergency it has become necessary to do some or all of the following at the appropriate times: (a) restrict the use of District water, (b) prohibit the wastage of District water, and (c) to prohibit use of District water during the period of the emergency for specific uses which the District may from time to time find to be non-essential;

4. To implement some or all of the actions set forth above it will be necessary for the Board of Directors of the District to adopt regulations, restrictions and ordinances on the delivery and consumption of water as will, in the sound discretion of the Board of Directors, conserve the water supply for the greatest public benefit with particular regard to household and domestic use, sanitation and fire protection. Said regulations and restrictions may contain provisions for mandatory conservation an allocation program and, if deemed appropriate, the prohibition on new water service connections and for the termination of discontinuing service to consumers wilfully violating the regulations and restrictions. Said regulations may, after allocating and setting aside the amount of water which in the opinion of the Board of Directors will be necessary to supply water needed for household domestic uses, sanitation and fire protection, establish priorities in the use of water for other purposes and provide for the allocation, distribution and delivery of water for such other purposes, without discrimination between consumers using water for the same purpose or purposes;

5. It is the Board's present intent, but it shall not be limited hereby, to take the following steps pursuant to the
authority conferred by law and this resolution: (a) to adopt programs to encourage water consumers to conserve water, (b) to prepare and at the proper time institute rationing rules and regulations, and (c) to attempt to resolve the threatened water shortage at the earliest possible date and to take all such other actions as may be allowed under the law;

6. All of the recitals herein above set forth are hereby adopted as findings of the Board of Directors of this District upon all of the matters set forth in Sections 350 through 358 and Sections 31026 through 31029 of the Water Code.

Vote on the Resolution by roll call resulted as follows:

AYES: Hickey, Bailey, Bradley, Fox, Sullwold

NAYES: NONE

ABSENT: NONE

DATED: January 31, 1990

APPROVED:

[Signature]
Harold H. Sullwold, President

ATTEST:

[Signature]
Robert R. Lieberknecht, Secretary

(SEAL)
rmj/6456-45/resol.547
Appendix III

ORDINANCE NO. 90-1

AN ORDINANCE OF THE CARPINTERIA COUNTY WATER DISTRICT PERTAINING TO DROUGHT REGULATIONS AND WATER CONSERVATION STANDARDS

BE IT ORDAINED by the Board of Directors of the Carpinteria County Water District as follows:

Section 1. Declaration of Water Shortage Emergency. The Board has conducted a duly noticed public hearing on January 31, 1990, to determine whether a drought-induced water shortage emergency exists and, if so, what regulations should be adopted in response to the shortage. By Resolution No. 547, dated January 31, 1990, the Board of Directors of the Carpinteria County Water District declared a water shortage emergency to prevail within the boundaries of the Carpinteria County Water District.

Section 2. Purpose and Scope. This Ordinance adopts regulations to deal with the water shortage emergency which the Board has found to exist. These regulations are effective immediately and the use of all water obtained by or through the distribution facilities of the District shall be governed and controlled by the provisions of this Ordinance.

Section 3. Definitions. The following terms are defined for the purposes of this Ordinance.

(a) "Customer" means the person or entity responsible for payment for water service at a particular property, as shown in the District's water billing records.

(b) "District" means the Carpinteria County Water District.
(c) "Board" means the Board of Directors of the District.

(d) "Manager" means the General Manager of the District.

(e) "Consumer" means every person, firm, trust, partnership, association, corporation, city, county, state or local agency, political subdivision, district or entity of any kind who uses water.

(f) "Waste" means any excessive, unnecessary or unwarranted use of water, including but not limited to any use which causes unnecessary runoff beyond the boundaries of any property as served by its meter and any failure to repair as soon as reasonably possible any leak or rupture in any water pipes, faucet, valves, plumbing fixtures or other water service appliances.

(g) "Billing period" means the period regularly used by the District for billing customer accounts, which is monthly for irrigated agriculture and bi-monthly for all other accounts.

Section 4. Prohibition on Waste of Water.
It shall be a violation of this Ordinance for any consumer or customer to waste any water obtained from or through the distribution facilities of the District.

Section 5. Prohibition of Certain Uses.
During the term of the drought shortage emergency declared by Resolution No. 547 and for as long as that condition exists, the following water use regulations, and such other regulations as may be adopted by resolution of the Board, shall apply to any and all use of water obtained from or through the distribution facilities of the District.

(a) The use of running water from a hose, pipe, or any other devise for the purpose of cleaning buildings and
paved, tile, wood, plastic or other surfaces shall be prohibited, except in the event the Manager determines in writing that such use is the only feasible means of correcting or preventing a potential threat to health or safety.

(b) All restaurants that provide table and/or counter service shall post, in a conspicuous place, a Notice of Drought Condition as approved by the Manager and shall refrain from serving water except upon specific request by a customer.

(c) Any use of water that causes runoff to occur beyond the immediate vicinity of use is prohibited.

(d) Boats and vehicles shall be washed only at commercial car washing facilities or by use of a bucket and hose equipped with a self-closing valve that requires operator pressure to activate the flow of water.

(e) (1) Irrigation at any time from 10:00 a.m. to 4:00 p.m. of any yard, park, recreation area, or other area containing vegetation shall be prohibited. Automatically controlled irrigation systems shall not be set to irrigate between the hours of 10:00 a.m. to 4:00 p.m., or to permit runoff beyond the immediate vicinity of use.

(2) Pursuant to Section 7(a) below, the Manager may grant an exception in writing to the provisions of Section 5(e)(1) and allow the use of water received from or through District facilities to be used for irrigation by commercial nurseries or for other commercial agricultural purposes between the hours of 10:00 a.m. and 4:00 p.m.

(3) The setting forth herein of specific examples of prohibited waste shall not constitute a limitation on the definition of waste of water or on prohibition of any such other uses as may constitute waste within said definition.

Section 6. Place of Use of Water.

Except as otherwise provided in this Ordinance or as specifically authorized by the Manager, water received from or
through a District meter may be used only on and for the
property at the address to which that meter was assigned by the
District.

Section 7. Future Restrictions.
All consumers are hereby notified that further
restrictions or prohibitions on water use and service including
but not limited to the prohibition of new connections and the
rationing of water, may hereafter become necessary, and nothing
herein, and no application, permit or approval of any water
service or water service facilities granted pursuant to these
rules shall vest in the applicant any right to a particular use
or quantity of water, but such applicant shall be subject to
all further prohibitions, restrictions, rules and regulations
in the same manner and extent as any other consumer or class of
consumer similarly situated existing at the time such
prohibitions or restrictions are imposed.

Section 8. Exemptions and Appeals.
(a) Exemptions to the water use regulations set
forth in this Ordinance may be granted by the Manager for
specific uses of water, on the basis of hardship, or for
reasons of health or safety. Any consumer may appeal any
decision concerning application of the provisions of this
Ordinance by the Manager to the Board of Directors by filing a
written appeal on forms provided by the District with the
Manager within ten (10) days from the date of the decision.
The Board of Directors shall set the matter for hearing at a
regular or special meeting within thirty (30) days from the
date the appeal is filed. The District shall provide written
notice of said hearing at least five (5) days prior to said
hearing.

(b) Action by Board. At said hearing, the
Board may, in its discretion, affirm, reverse or modify the
Manager's decision and impose any conditions it deems just and proper if it finds and determines that (1) the restrictions herein would cause an undue hardship or threat to health or safety, or (2) that due to particular facts and circumstances, the provisions of this Ordinance are not applicable to this situation under consideration.

(c) The Board may from time to time fix and charge an appropriate filing fee in an amount found by the Board to be the administrative expenses of handling appeals. The fee schedule shall be posted in the District office and may be changed by the Board without the necessity of amending this Ordinance.

Section 9. Violations.
(a) Any failure to comply with a provision of this Ordinance shall constitute a violation, regardless of whether the failure to comply is caused by a customer, consumer or any other person or entity.

(b) Where the failure to comply is found by the Board to be a continuing and intentional, each successive failure to comply shall be a separate and distinct violation.

Section 10. Penalties and Charges.
(a) It shall be a misdemeanor for any person, firm, association, partnership, corporation or other entity to use or apply water received from this District contrary to or in violation of any restriction or prohibition contained in this Ordinance. [Water Code Section 31029]

(b) Service may be terminated to any consumer or customer who knowingly and willfully violates or allows the knowing and willful violation of any provision of this Ordinance, after having been given reasonable notice and an opportunity to be heard to protest against the finding of such willful violation and the discontinuance of service.
(c) The following additional penalties shall apply to any violation of any provision of this Ordinance:

(1) For the first and second violation within any consecutive twelve (12) calendar months, the District will issue a written notice of the fact of such violation.

(2) For a third violation within any consecutive twelve (12) calendar months, the District shall impose a surcharge against the customer for the property where the violations occurred or is occurring, in an amount equal to 100 percent of the water bill for the billing period in which the violation occurred.

(3) For a fourth violation and any subsequent violation within any consecutive twelve (12) calendar months, the District:

 a. Shall impose a surcharge against the customer for the property where the violation occurred, or is occurring, in an amount equal to 100 percent of the water bill for the billing period in which the violation occurred.

 b. May install a flow restricter on or shut off water service to the property where the violation occurred or is occurring, for a period to be determined by the Manager.

 c. If a flow restricter is installed or water service shut off pursuant to this section, prior to restoration of normal water service the customer whose service is affected shall be required to reimburse the District for whatever cost it has occurred and will incur in installing and removing a flow restricter and in shutting off and turning on water service.

(4) Any surcharge imposed pursuant to this section shall be added to the account of the customer for the property where the violation occurred or is occurring and shall
be due and payable on the same terms and subject to the same conditions as any other charge for regular water service.

(5) Nothing in this Ordinance shall limit or be construed to limit the right of a customer to seek reimbursement of a surcharge from a tenant or other consumer responsible for violation.

Section 11. Notice of Violation/Hearing.

(a) For each violation of this Ordinance the Manager shall give notice as follows:

(1) By sending written notice through the U.S. mail to the customer for the property where the violation occurred or is occurring, at the current billing address shown in the District’s water billing records;

(2) In addition, the Manager may provide notice as follows:

 a. By sending written notice through the U.S. Mail to the consumer at the property address where the violation occurred or is occurring;

 b. By causing the giving of written notice personally to the person who committed the violation or by leaving written notice with some person deemed by the District to be of suitable age and discretion at the property where the violation occurred or is occurring;

 c. If neither the person who committed the violation nor a person deemed by the District to be of suitable age and discretion can be found, then by affixing written notice in a conspicuous place on the property where the violation occurred or is occurring.

(b) Any written notice given under this section shall contain a statement of:

 (1) The time, place and nature of the violation;
(2) The person(s) committing the violation, if known;

(3) The provision(s) of this Ordinance violated;

(4) The possible penalties for each violation;

(5) The customer or consumer's right to request a hearing on the violation, the time within which and to whom such request must be made; and

(6) The customer or consumer's loss of the right to a hearing in the event the customer or consumer fails to request a hearing within the time required.

(c) Any customer or consumer provided a notice of violation in accordance with the provisions of this Ordinance shall have the right to request a hearing before the Board. The request must be made in writing and must be actually received at the office of the District within ten (10) calendar days of the date of the notice of violation. If a hearing is requested, the Board shall give the customer or consumer requesting such hearing a notice in writing of the date, time and place of the hearing in the manner set forth above at least ten (10) days prior to the date of the hearing. The Board shall conduct the hearing at which both written and oral evidence may be presented, and shall decide whether a violation has occurred and the appropriate penalty. In determining the appropriate penalty, the Board may consider whether the customer or consumer knew of the violation at the time it occurred and whether he or she took reasonable action to correct the violation upon notification of it. The decision of the Board shall be final.

(d) If a customer or consumer fails to request a hearing before the Board in the manner and within the period provided in this section, the action of the District shall be deemed final.
(a) If a hearing is held, the District shall prepare a brief and concise summary of the proceedings as a part of the District's records.

Section 12. Suspension and Repeal of Conflicting Ordinances and Rules and Regulations.
To the extent that the terms and provisions of this Ordinance are inconsistent or in conflict with the terms and provisions of any prior District ordinance, resolution, rule or regulation, the terms of this Ordinance shall prevail, and inconsistent and conflicting provisions of prior ordinances, resolutions, rules and regulations shall be suspended during the effective period of this Ordinance.

Section 13. Severability.
If any section, subsection, sentence, clause or phrase of this Ordinance is for any reason held to be unconstitutional or invalid, such decision shall not affect the validity of the remaining portions of this Ordinance. The Board hereby declares that it would have passed this Ordinance and each section, subsection, sentence, clause or phrase thereof irrespective of the fact that any one or more sections, subsections, sentences, clauses or phrases be unconstitutional or invalid.

Section 14. Effective Date, Publication, Posting and Recording.
(a) This Ordinance shall be in full force and effect upon adoption.
(b) This Ordinance shall be published once in full in a newspaper of general circulation, printed and published and circulated in the District within ten days after adoption.
(c) This Ordinance may be recorded in the official records of the County of Santa Barbara and if this Ordinance is so recorded, any change, amendment, modification or repeal shall be recorded in said official records.

PASSED, APPROVED AND ADOPTED by the Board of Directors of the Carpinteria County Water District on this 31st day of January, 1990, by the following vote:

AYES: HICKIE, BAILEY, BRADLEY, FOX, SULLWOLD

NAYES: NONE

ABSENT: NONE

[Signature]
President
CARPINTERIA COUNTY WATER DISTRICT
HAROLD E. SULLWOLD

ATTEST

[Signature]
Secretary, ROBERT R. LIEBERKNECHT

cew/6456-45/ord.90-1

- 10 -
STATE OF CALIFORNIA
COUNTY OF SANTA BARBARA

I, ROBERT R. LIEBERKNECHT, Secretary of the Carpinteria County Water District, DO HEREBY CERTIFY that the above and foregoing is a full, true and correct copy of Ordinance No. 90-1 of said District, adopted at a special or regular meeting of the Governing Board on the 31 day of JANUARY, 1990, and that the same has not been amended or repealed.

DATED: This 31 day of JANUARY, 1990.

Robert R. Lieberknecht
Secretary
CARPINTERIA COUNTY WATER DISTRICT
ROBERT R. LIEBERKNECHT
Appendix IV

ORDINANCE NO. 90-2

AN ORDINANCE OF THE CARPINTERIA COUNTY WATER DISTRICT RESTRICTING AND LIMITING THE AMOUNT OF USE OF WATER SUPPLIED FROM OR THROUGH THE DISTRICT DISTRIBUTION SYSTEM, PROHIBITING CERTAIN USES OF WATER, PROVIDING FOR RELIEF THEREFROM IN EMERGENCY AND CONDITIONS OF UNDUE HARDSHIP AND PROVIDING FOR PENALTIES FOR VIOLATION THEREOF AND IMPLEMENTING AND SUPPLEMENTING ORDINANCE NO. 90-1 DATED JANUARY 1, 1990

BE IT ORDAINED BY THE BOARD OF DIRECTORS OF CARPINTERIA COUNTY WATER DISTRICT AS FOLLOWS:

SECTION 1. USE OF WATER. The use of all water obtained by or through the distribution facilities of this District shall be governed and controlled as in this Ordinance set forth.

SECTION 2. PROHIBITION AGAINST WASTE OF WATER. It shall be unlawful for any water user obtaining any water from and through the distribution facilities of this District to waste any of said water. (See Ordinance No. 90-1)

SECTION 3. DEFINITIONS. As used in this Ordinance, the following words or terms shall have the meanings as in this section set forth.

(a) **Meter Account**: A District record which identifies each meter through which water is served to a particular premises, the name of the person requesting the service, the location of the premises and the person responsible for the account. Each such meter account (sometimes referred to as "Account") is identified by an account number.

(b) **Agriculture or Agricultural Use**: Any application of water for the production of crops for commercial or profit purposes.

(c) **Commercial Use**: The use of water to serve the purposes
of business, commerce, trade or industry other than agriculture and recreation.

(d) **Domestic Use**: Uses which are common to residences (homes) including reasonable landscaping, the watering of a reasonable number of non-commercial domestic or barnyard stock or animals and all other uses of water in the District not otherwise specifically classified herein.

(e) **Industrial Use**: The same as commercial use.

(f) **Irrigation use**: The same as agricultural use.

(g) **Recreational Use**: The use of water for public camps or picnic grounds, public parks, public athletic playing fields, tennis facilities available to the public, the community swimming pool and public or private golf courses and the surrounding grounds and structure used in connection with the above or incidental thereto.

(h) **Schools**: All schools, both public and private, and including all surrounding grounds and structures thereon used for usual school purposes.

(i) **Unit of Water**: The term used to measure a quantity of water. In this Ordinance one (1) unit of water is One Hundred Cubic Feet (HCF). A cubic foot of water is the equivalent of approximately 7.48 gallons. One unit of water (100 HCF) is the equivalent of approximately 748 gallons of water. Water rates are quoted in "units of water."

(j) **Billing Cycle or Period**:

1) **Agricultural Billing Cycle**: The billing cycle for agricultural meters and uses is a period of approximately 30 consecutive days. There are twelve (12) consecutive billing cycles in a water year.

2) **All Other Billing Cycles**: For all meters and uses other than agricultural, the billing cycle is a period of approximately 60 days. There are six (6) consecutive billing cycles in a water year for all uses other than agricultural.

3) **Meter Readings**: Agricultural meters are read every month and are read during the last week of each month and each agricultural meter will be read on the same day of each month when it is possible to do so. All other meters will be read
every other month (bi-monthly) in the same manner and at
approximately the same time of the month as agricultural meters.

(k) Allocation (Ration) Cycle or Period: The allocation or
ration cycle or period for each account is a period of time for
which a certain amount of water is allocated for use by the
account holders during the designated cycle or period. For the
method of determining the basic allocation for each account, see
Section 4 of this Ordinance. For the duration of each allocation
see Section 7 of this Ordinance.

(l) Water Year: Each water year for each account consists
of twelve (12) consecutive calendar months. Each water year
begins with the meter reading in the month of May each year and
ends with the meter reading in the same month in the following
calendar year.

SECTION 4. DETERMINATION OF WATER ALLOCATION (RATION).

(a) Historical Use Period: The amount of water allocated
to each meter account shall be determined from time to time by
the District using the methods set forth in this Ordinance and
the allocation will be based on and derived from District records
showing the historical amounts used by each account over a
selected Historical Use Period (HUP). The selected historical
use period for determining the basic allocation in all categories

(b) Agricultural Allocations: Each agricultural account
shall be given a total allocation for the water year which
allocation shall be eighty percent \((80\%)\) of the average yearly
use by each respective account during the five (5) year
historical use period. This total allocation will be shown for
each of the 12 billing cycles in the water year and each billing
cycle allocation will be \(80\%\) of the historical average of the
respective billing cycle.

(c) Domestic Use (Single Family): The allocation for all
residential domestic uses, other than condominiums, apartments,
multi-units and mobile home or recreational vehicle parks, shall
be determined by the method shown in this Section 4(c).

The District has identified from its records, the records of
the City of Carpinteria and the County of Santa Barbara, certain
residential areas where each of the residential parcels (lots) and the residential structures within each respective area are substantially similar in size.

For each area which the District has determined to contain substantially similar lots and structures, the District has determined from its meter account records the total amount of water used in that area for the five year historical use period and the average amount of use for each year and each month during the historical use period. The historical average has been reduced by twenty percent (20%) to arrive at a total allocation for each respective area. The reduced amount has been divided by the total number of accounts in the area to arrive at an equal allocation for each account in each respective area for the water year. The yearly allocation is divided into six (6) bi-monthly billing cycles, each of which will reflect the historical pattern of use during each of those cycles.

(d) Condominiums, Apartments and Other Types of Multiple Living Structures (Excluding Mobile Homes): All of these types of residential units have been grouped together for allocation purposes. The District has determined the total monthly and yearly historical use of the total group by using the same methods described in (c) above. The District has in a like manner reduced this historical average by twenty percent (20%). The reduced amount has then been divided by the total number of single family units in the group. The resulting allocation for each unit has then been assigned to each meter account based on the total number of units being served by the particular meter.

(e) Mobile Home Parks (Excluding the Carpinteria State Beach Park): All mobile home parks have been grouped together for allocation purposes. The District has determined to the total historical use for the entire group, for each month and year in the historical use period and has determined the average use for each month and year during the historical period. This average amount has been reduced by 20% and the resulting figure has been divided by the total number of mobile home spaces in the entire group. The figure thus determined for each space has been assigned to each mobile home park based on the total number of
units in each park.

(f) Residential Units With a Home Owners' Association Meter: Residential units in this category such as Seacoast and The Meadows each separately have, in like manner, had the historical average determined, applied and reduced by twenty percent (20%) and the resulting figure has been assigned to the respective home owners' associations' meter account.

(g) Other Metered Accounts: Other accounts (including but not limited to, State, County, City and Special Districts), except as described in (h) below, have in a like manner had the respective historical average of each account reduced by twenty percent (20%) and the resulting allocation figure has been assigned to the respective metered account.

(h) Accounts Without Historical Five Year Average: Accounts not having a five (5) year historical history shall be handled on a case-by-case method and each such account shall have its allocation determined by the District by using as a guide the allocation determined for similar uses and size after making any adjustment necessary.

(i) Future Allocation Adjustment: Adjustments in allocations may be made in the future years based on the amount of water available to the District. Future water supply factors may cause the District to determine priorities in the categories of use and the amount of use in each category. The District may, in subsequent adjustments, find it necessary to declare some uses as being non-essential after giving consideration to the amount of water needed to be reserved for health, fire and safety.

(j) The allocation for each water year shall be determined prior to the first day of each water year and if there are changes, account holders will be given written notice of the change.

SECTION 5. USE OF RATIONED WATER. Subject to the prohibition against the waste of the use of water and subject to the penalties provided for the violation of this Ordinance, it shall be the sole responsibility of each water account holder to manage
the holder's water needs in such a manner as not to exceed the amount of water allotted to that account.

SECTION 6. PLACE OF AND CLASS OF USE OF RATIONED WATER. Except as hereinafter provided, water allotted to a water account may be used only on and for the premises described in the District records as being served by account and on no other premises and only for that class of use or uses served by that account and for no other use.

SECTION 7. ALLOCATION CYCLES, NO CARRY-FORWARD CREDIT.

(a) Agricultural Accounts: The water year for agricultural accounts shall be divided into four (4) allocation periods of approximately equal length, and each period shall consist of three (3) billing and allocation cycles of approximately thirty days in each cycle. The allocation for each allocation period shall be the sum of the allocations for the cycles comprising each allocation period determined as set forth in Section 4. Agricultural accounts shall be billed in each billing cycle, but the allotted water may be used at any time during the respective period for which the water was allocated. Allocated water which is not used in any given allocation period may not be carried forward for use in any subsequent allocation period.

(b) All Other Allocations: All accounts, other than agricultural, shall be on bi-monthly billing-ration cycles. Water which is allocated, but unused in a cycle may not be carried forward for use in any subsequent billing-ration cycle.

SECTION 8. PROCEDURE FOR AN EXCEEDED WATER RATION. If a water user uses more water during any ration cycle or period than has been allocated to that account for that cycle or period, the fact of such excess use shall constitute a violation of this Ordinance and the penalty provision of Section 12 of this Ordinance may be invoked by the District in addition to any other enforcement or penalty procedure allowed by law including any surcharges and flow restrictors for excess use as provided by this Ordinance.
SECTION 9. SURCHARGE FOR EXCESS WATER USE.

(a) The surcharge hereby established for water used in excess of the amount allotted to each account shall be in addition to the basic water rates of the District under any applicable rule, regulation, resolution or ordinance in effect at the time of the excess use and shall be in addition to, and not in lieu of, any other penalties imposed by this Ordinance or Ordinance No. 90-1.

(b) If water is used during any ration cycle or period in excess of the amount allotted for that period, a surcharge shall be imposed on said excess use at double the basic water rate in the applicable rate bracket for units (100 cubic feet) of water, for the first five (5) units or fraction thereof in excess of the allotted amount. For each unit, or fraction thereof, in excess of the first five (5) units of overuse, the surcharge will be four times the applicable base rate. Surcharges shall appear on the first billing statement for that account immediately following the period in which the excess use occurred. The surcharge shall be paid to the District at the same time as the payment on the basic rate and the penalty for failure to pay the entire amount due (basic plus surcharge) shall be the same as the penalty imposed by the District for failure to pay the basic rate.

(c) If a surcharge is imposed in three (3) or more allocation cycles during the term of this Ordinance, in addition to the surcharge, or any other charge or penalty, the Board may, in its discretion, either install a device on the meter to restrict the flow of water or discontinue service to the property. The person(s) or entity in whose name the water account stands shall be requested to appear before the Governing Board at a hearing to show cause why the Governing Board should not take action to either install a restrictive flow device or devices on the meter serving said property or, in the alternative, discontinue water service to said property for such a period of time as the Governing Board may find to be appropriate under the circumstances.

(d) Notice of said hearing shall be in writing and mailed
or delivered to the person or persons at the address as shown on the District records for said water account.

There shall be set forth in said notice the amount of water allocated for each period in question, the amount actually used for each period, the amount of excess for each period, and the date, time and place of the hearing on said notice which date shall not be less than ten (1) days after the date (postmark) of the mailing or delivery of said notice.

(e) Excess use shall be determined by the records of the District as taken from meter readings and shall be presumed to be correct and the burden of showing that the meter from which said readings are taken is inaccurate shall be on the person or persons to whom said notice is directed.

(f) All costs of installing or removing any restrictive flow devices, and/or disconnecting or connecting said service shall be the sole cost of the person or persons in whom the account stands and shall be paid promptly upon being billed therefor.

SECTION 10. REQUEST FOR RATION REVIEW.

(a) All Accounts: An account holder may, at anytime and from time to time, file a written application with the District on a form provided by the District, requesting a review of the amount of water to the holder's account. A fee to cover the District's administrative costs of review will be fixed by the District, which fee must be paid at the time of the application.

(b) Application of Review to Violations and Surcharge: If, as a result of said review, the allotment is raised, any penalty for excess use which could have been or actually was imposed shall be either reduced, excused or rescinded depending upon the amount of the raise in relation to the excess use.

In a like manner, any surcharge which could have been (or was actually) imposed because of previous excess use will be reduced or not be imposed, or shall be refunded, up to the extent of the new allotment, but, shall not be excused or refunded for the amount used in excess of the new allotment.

Except as otherwise provided in this Ordinance, any
violations and surcharges excused under this section shall be only for the ration cycle or period immediately preceding the date of the application or request for review of the allotment in question and for no other period.

SECTION 11. APPEALS AND EXCEPTIONS.

(a) Appeals: Any water user may appeal any decision or application of the provisions of this Ordinance by District staff, to the Board of Directors by filing a written appeal with District, and the Board of Directors shall consider the appeal at a regular or special meeting within thirty (30) days from the date the appeal is filed. The District shall give the appellant written notice of the meeting at which the appeal will be considered at least five (5) days prior to said meeting. The District may fix fees for filing appeals in an amount deemed from time to time sufficient to cover District costs for appeals.

(b) Action by Board: At said meeting, the Board of Directors of the District may, in its discretion, affirm, reverse or modify the District staff's decision and make any adjustments and impose any conditions it deemed just and proper, if it finds and determines that (1) the terms of this Ordinance be applied to the appellant, would cause an undue hardship not suffered by others in the same category of use or (2) that due to peculiar facts and circumstances, none of the provisions of this Ordinance are applicable to the particular situation under consideration.

SECTION 12. PENALTIES.

(a) It is a misdemeanor for any person, firm, association, partnership, corporation or any water user to use or apply water received from this District contrary to or in violation of any restriction or prohibition contained in this Ordinance until this Ordinance has been repealed or the emergency which was declared by the District has closed and upon conviction thereof such person, firm, association, partnership or corporation shall be punished by imprisonment in the County Jail for not more than thirty (30) days or by fine of not more than Six Hundred Dollars ($600.00) or by both the fine and imprisonment, for each
violation and for each day of an additional violation.

(b) In addition to any other penalty or surcharge, any person, firm, association, partnership, corporation or water user violating any restriction or prohibition of this Ordinance shall be subject to having water service discontinued to the affected property, after having been given reasonable notice and an opportunity to be heard to protest against the findings of such willful violation and the discontinuance of service.

SECTION 13. SUSPENSION OF CONFLICTING ORDINANCES AND RULES AND REGULATIONS. To the extent that the terms and provisions of this Ordinance are inconsistent, or in conflict with the terms and provisions of any prior District Ordinances, Resolutions and Rules and Regulations, the terms of this Ordinance shall prevail and inconsistent and conflicting provision of prior ordinances, resolutions and rules and regulations shall be suspended during the effective period of this Ordinance. Notwithstanding the foregoing, nothing herein contained shall have any effect on the provisions of Ordinance No. 90-1, provided however, that if there is a conflict, or there is an ambiguity as between Ordinance No. 90-1 and this Ordinance the Governing Board shall have the authority to resolve the conflict or ambiguity. Any such resolution shall be applied to all future like situations until such time as either or both Ordinances are amended to address the situation in question.

SECTION 14. TEMPORARY SUPPLIES. From time to time the District may be able to obtain temporary supplies of water in excess of the normal amounts available to the District, in such event the District may allocate such water for use in the District as the District deems best and such temporary allocation shall not require an amendment or change in this Ordinance but may be done by resolution or minute order of the Governing Board.

SECTION 15. SEVERABILITY. If any section, subsection, sentence, clause or phrase of this Ordinance is for any reason held to be unconstitutional, or invalid, such decision shall not affect the
validity of the remaining portions of this Ordinance. The Board of Directors hereby declares that it would have passed this Ordinance and each section, subsection, sentence, clause or phrase thereof irrespective of the fact that any one or more sections, subsections, sentences, clauses or phrases be unconstitutional or invalid.

SECTION 16. EFFECTIVE DATE, PUBLICATION, POSTING AND RECORDING.

(a) This Ordinance is an emergency ordinance and shall be in full force and effect on the date of adoption and shall be operable as to each account as of the meter reading in May, 1990.

(b) This Ordinance shall be published once, in full, in a newspaper of general circulation, printed, published and circulated in this District, within ten (10) days after adoption.

(c) This Ordinance may be recorded in the Official Records of this County of Santa Barbara and if this Ordinance is so recorded any change, amendment, modification or repeal shall be recorded in said Official Records.

PASSED AND ADOPTED by the Governing Board of the Carpinteria County Water District this 24th day of April, 1990 by the following vote, to wit:

AYES: Bradley, Hickey, Bailey, Fox and Sullwold
NAYES: None
ABSENT: None
ABSTAIN: None

[Signature]
President of the Governing Board
CARPINTERIA COUNTY WATER DISTRICT

ATTEST:

[Signature]
Secretary
State of California
County of Santa Barbara

I, Robert R. Lieberknecht, Secretary of the Carpenteria County Water District, do hereby certify that the foregoing is a full, true and correct copy of Ordinance No. 90-2, adopted on April 24, 1990, and that the same has not been amended or repealed.

DATED: This 26 day of April, 1990.

[Signature]
Robert R. Lieberknecht
Secretary
(Coal)
Appendix V

ORDINANCE NO. 90-3

AN ORDINANCE OF THE CARPINTERIA COUNTY WATER DISTRICT ESTABLISHING RULES AND REGULATIONS FOR THE RESTRICTION UPON AND THE PROHIBITION OF THE DISTRIBUTION AND DELIVERY OF WATER WITHIN THE DISTRICT

BE IT ORDAINED BY THE BOARD OF DIRECTORS OF THE CARPINTERIA COUNTY WATER DISTRICT AS FOLLOWS:

Section 1. Declaration of Water Shortage Emergency.

The Board has conducted a duly noticed public hearing on January 31, 1990, to determine whether a drought-induced water shortage emergency exists and, if so, what regulations should be adopted in response to the shortage. By Resolution No. 547, dated January 31, 1990, the Board of Directors of the Carpinteria County Water District declared a water shortage emergency to prevail within the boundaries of the Carpinteria County Water District.

Section 2. Purpose and Scope.

This Ordinance adopts regulations establishing a moratorium on issuance of "Can and Will Serve" letters for new service connections as a necessary measure to deal with the water shortage emergency which the Board has found to exist. These regulations are effective immediately and the use of all water obtained by or through the distribution facilities of the District shall be governed and controlled by the provisions of this Ordinance.
Section 3. Definitions.

The following terms are defined for the purpose of this Ordinance.

(a) "District" means the Carpinteria County Water District.

(b) "Board" means the Board of Directors of the District.

(c) "Manager" means the General Manager of the District.

(d) "Applicant" means every person, firm, trust, partnership, association, corporation, city, county, state or local agency, political subdivision, district or entity of any kind.

(e) "Service connection" means the tapping of or the connection to any District water service facility for the purpose of distributing, delivering and serving water.

(f) "Water Service Facility" refers to and includes service connections, meters, main extensions and all other appurtenances used or useful for the delivery of water. Unless specifically indicated to the contrary, references herein to water service facilities shall mean facilities which are owned (or are to be owned) by Carpinteria County Water District and shall not mean private water service facilities.

(g) "Can and Will Serve Letter" means the District's standard form letter customarily sent to the Community Development Department of the City of Carpinteria or the Resource Management Department of the County of Santa Barbara, indicating that certain projects are within the District and are entitled to water service subject to the rules and regulations of the District.
Section 4. Prohibition of Additional Water Service Facilities.

(a) Except as expressly provided herein, no new, additional, further expanded or increased in size water service connections, meters, main extensions or other water service facilities of any kind, shall be made, allowed, approved or accepted on or after the effective date of this Ordinance. The term "new water service facilities" shall be deemed to refer to and include each and all of the above. The uses restricted and prohibited herein are found by the Board of Directors to be nonessential.

(b) Any applicant who possesses a valid Can and Will Serve letter issued for water service by the District shall be exempt from the provisions of this Ordinance for the specific water service facility covered by said Can and Will Serve letter. Except as herein provided, no application for Can and Will Serve letter shall be accepted by the District, and no Can and Will Serve letter shall be issued by the District on or after the effective date of this Ordinance.

Section 5. Relocation, Replacement and Repair of Existing Facilities.

Notwithstanding any other provisions of this Ordinance, this Ordinance does not apply to repair, relocation or replacement of existing District, or private water service facilities of the same type, size and capacity in order to continue existing water service, nor does this Ordinance apply to the construction and installation of new additional District facilities, whether constructed and installed by the District or by a private individual, for dedication to the District on completion.
Section 6. Requirements for Information.

Applicants for water service facilities shall be responsible for providing all information and proof requested by the Board of Directors or the District staff for use in processing, verifying or enforcing any matter provided for herein, and the applicants shall do so at their sole cost and expense. Any failure to provide the requested information or proof shall be grounds for denial of any application or relief.

Section 7. Future Restrictions.

All applicants for water service facilities, including all applicants who have received Can and Will Serve letters as of the effective date of this Ordinance, are hereby notified that further restrictions or prohibitions on water use and service may hereafter become necessary, and nothing herein, and no application, permit or approval of any water service or water service facilities granted pursuant to these rules shall vest in the applicant any right to a particular use or quantity of water, but such applicant shall be subject to all further prohibitions, restrictions, rules and regulations in the same manner and extent as any other consumer or class of consumer similarly situated existing at the time such prohibitions or restrictions are imposed.

Section 8. Appeals and Exceptions.

(a) Exemptions to the water service restrictions set forth in this Ordinance may be granted by the Manager for specific uses of water, and specific installation of water service facilities, on the basis of hardship, or for reasons of health and safety. Any applicant may appeal any decision concerning provisions of this Ordinance by the
Manager to the Board of Directors by filing a written appeal on forms provided by the District with the Manager within ten (10) days from the date of the decision. The Board of Directors shall set the matter for hearing at a regular or special meeting within thirty (30) days from the date the appeal is filed. The District shall provide written notice of said hearing at least five (5) days prior to said hearing.

(b) At said hearing, the Board may, in its discretion, affirm, reverse or modify the Manager's decision and impose any conditions it deems just and proper if it finds and determines that (1) the restrictions herein would cause an undue hardship or threat to health or safety or (2) that due to the particular facts and circumstances, the provisions of this Ordinance are not applicable to this situation under consideration.

(c) The Board may from time-to-time fix and charge an appropriate filing fee in an amount found by the Board to be the administrative expenses of handling appeals. The fee schedule shall be posted in the District office and may be changed by the Board without the necessity of amending this Ordinance.

Section 9. Penalties.

(a) It is a misdemeanor for any person, firm, trust, partnership, association, corporation or entity of any kind, to use, obtain or apply water received from this District contrary to or in violation of any restriction or prohibition contained in this Ordinance. Upon conviction thereof such person, firm, trust, association, partnership, corporation or other entity shall be punished by imprisonment in the County Jail for not more than thirty (30) days or by fine of not more than Six Hundred Dollars ($600.00) or by both
the fine and imprisonment, for each violation and for each day of an additional violation.

(b) Any person, firm, trust, partnership, association, corporation or entity of any kind willfully violating any restriction or prohibition of this Ordinance shall be subject to having water service discontinued to the affected property, after having been given reasonable notice and an opportunity to be heard to protest against the finding of such willful violation and the discontinuance of service.

Section 10. Conflicting Ordinances and Rules and Regulations.

To the extent that the terms and provisions of this Ordinance are inconsistent or in conflict with the terms and provisions of any prior District Ordinances, Resolutions and Rules and Regulations, the terms of this Ordinance shall prevail and inconsistent and conflicting provision of prior ordinances, resolutions and rules and regulations shall be suspended during the effective period of this Ordinance. Notwithstanding the foregoing, nothing herein contained shall have any effect on the provisions of Ordinance No. 90-1 or 90-2, provided, however, that if there is a conflict, or there is an ambiguity as between Ordinance 90-1 or 90-2 and this Ordinance, the Board shall have the authority to resolve the conflict or ambiguity. Any such resolution shall be applied to all future like situations until such time as any or all such ordinances are amended to address the situation in question.
Section 11. Severability.

If any section, subsection, sentence, clause or phrase of this Ordinance is for any reason held to be unconstitutional or invalid, such decision shall not affect the validity of the remaining portions of this Ordinance. The Board hereby declares that it would have passed this Ordinance and each section, subsection, sentence, clause or phrase thereof irrespective of the fact that any one or more sections, subsections, sentences, clauses or phrases be unconstitutional or invalid.

Section 12. Effective Date, Publication, Posting and Recording.

(a) This Ordinance is an emergency ordinance and shall be in full force and effect upon adoption.

(b) This Ordinance shall be published once in full in a newspaper of general circulation, printed and published and circulated in the District within ten (10) days after adoption.

(c) This Ordinance may be recorded in the official records in the County of Santa Barbara and if this Ordinance is so recorded, any change, amendment, modification or repeal shall be recorded in said official records.
PASSED, APPROVED AND ADOPTED by the Governing Board of the Carpinteria County Water District on this 24th day of April, 1990, by the following vote, to wit:

AYES: Bradley, Hickey, Sullwold, Fox, Bailey
NAYES: None
ABSENT: None
ABSTAIN: None

[Signature]
President of the Governing Board
CARPINTERIA COUNTY WATER DISTRICT

ATTEST

[Signature]
Secretary
STATE OF CALIFORNIA
COUNTY OF SANTA BARBARA

I, _________________________, Secretary of the CARPINTERIA COUNTY WATER DISTRICT, do hereby certify that the foregoing is a full, true and correct copy of Ordinance No. 90-3, adopted on _____April 24_______, 1990, and that the same has not been amended or repealed.

DATED: This 24th day of _____April____, 1990.

Robert L. Leitner
Secretary

(Seal)
Appendix I

Emergency Response Plan
Carpinteria Valley Water District
Water System Emergency
Response Plan

Prepared by:
Carpinteria Valley Water District
January 4, 2005

Name:
Copy Number:

Contents

Acronyms and Abbreviations .. iv
1.0 Introduction ... 1-1
 1.1 Purpose ... 1-1
 1.2 Goals ... 1-1
 1.3 Requirement .. 1-1
 1.4 Access Control .. 1-2
 1.5 Plan Overview .. 1-2
2.0 Emergency Planning Process Information 2-1
 2.1 General Information .. 2-1
 2.1.1 Planning Partnerships 2-1
 2.1.2 Mutual Aid Agreements 2-2
 2.1.3 Relationship Between ERP and Other Plans 2-2
 2.2 Disaster Events or Scenarios 2-3
 2.2.1 Natural Disasters ... 2-3
 2.2.2 Events Caused by Human Intervention (Man-made Threats) ... 2-4
3.0 Water System Information 3-1
 3.1 System Specific Information 3-1
 3.2 General System Map/Service Area Map 3-2
 3.3 Critical System Components 3-2
 3.4 Identification of Alternate Water Sources 3-3
 3.4.1 Alternate Raw Water Sources 3-3
 3.4.2 Interconnects and Agreements with Other Utilities 3-3
 3.4.3 Water Sources for Short-term Outages 3-4
 3.5 Emergency Water Supply calculations 3-4
 3.5.1 Amount of Water Needed for Various Durations 3-4
 3.5.2 Estimated Emergency Supply of Water 3-5
 3.6 Emergency Equipment and Supplies 3-5
 3.6.1 Facility Emergency Equipment List 3-5
 3.6.2 Personnel Protective and Other Emergency Equipment .. 3-8
 3.6.3 Telephone Equipment 3-8
 3.6.4 VHF Radio Communications 3-8
 3.6.5 Citizen’s Band Radios / Military Radios 3-9
 3.7 Property Protection .. 3-9
4.0 SEMS/ICS Integration and Organization 4-1
 4.1 Five Levels of SEMS .. 4-1
 4.2 Five Principle Functions of SEMS 4-1
 4.3 CVWD Incident Command Structure 4-3
 4.4 Emergency Operations Center 4-6
 4.4.1 EOC Description ... 4-6
 4.4.2 EOC Activation ... 4-6
5.0 Concept of Operations ... 5-1
 5.1 Decision Process .. 5-1
Acronyms and Abbreviations

AP action plan
ASDWA Association of State Drinking Water Administrators
ATSDR Agency for Toxic Substances and Disease Registry
AWWA American Water Works Association
BSL biosafety lab
BWO Boil Water Order
CAMAL Net California Mutual Aid Laboratory Network
CDC Center for Disease Control
CDHS California Department of Health Services
CST Civilian Support Team
DHS Department of Homeland Security
DWP Drinking Water Program
EOC Emergency Operations Center
EPA Environmental Protection Agency
ERP Emergency Response Plan
EWQSK Emergency Water Quality Sampling Kit
FBI Federal Bureau of Investigation
FEMA Federal Emergency Management Agency
GM General Manager
gpm gallons per minute
HAZMAT hazardous materials
HHS Health and Human Services
ICS Incident Command System
LD Laboratory Director
LEPC Local Emergency Planning Committees
LRN Laboratory Response Network
MDL Microbial Disease Laboratory
MSDS Material Safety Data Sheet
MWDSC Metropolitan Water District of Southern California
NRWA National Rural Water Association
OES Office of Emergency Services
OSHA Occupational Safety and Health Administration
PIO Public Information Officer
PWS Public Water System
RMP Risk Management Plan
SCADA Supervisory Control and Data Acquisition
SD Security Director
SEMS Standardized Emergency Management System
SRLB Sanitation and Radiation Laboratories Branch
UWA Unsafe Water Alert
VA vulnerability assessment
WMD Weapons of Mass Destruction
WTP water treatment plant
WUERM Water Utility Emergency Response Manager
WUOCM Water Utility Emergency Operations Center Manager
1.0 Introduction

This section presents the purpose, goals, requirements, access control, and plan overview of the Emergency Response Plan (ERP) for CVWD. Note that the ERP Activation process is described in Section 5.0.

1.1 Purpose

The purpose of this ERP is to provide CVWD with a standardized response and recovery protocol to prevent, minimize, and mitigate injury and damage resulting from emergencies or disasters of man-made or natural origin.

The ERP also describes how CVWD will respond to potential threats or actual terrorist scenarios identified in the vulnerability assessment (VA), as well as additional emergency response situations. Included in this ERP are specific action plans (APs) that will be used to respond to events and incidents.

1.2 Goals

The goals of this ERP are to:

- Rapidly restore water service after an emergency.
- Ensure adequate water supply for fire suppression.
- Minimize water system damage.
- Minimize impact and loss to customers.
- Minimize negative impacts on public health and employee safety.
- Provide emergency public information concerning customer service.

1.3 Requirement

This ERP has been designed to comply with Section 1433(b) of the Safe Drinking Water Act (SDWA) as amended by the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 (Public Law 107-188, Title IV – Drinking Water Security and Safety), California Government Code Section 8407.2 – Public Water System Plans, California Health and Safety Code, Sections 116460, 116555 and 116750, and California Waterworks Standards, Section 64560.

CVWD has provided the required certification to the United States Environmental Protection Agency (USEPA) that this emergency response plan incorporates the results of the VA completed for the system and includes plans, procedures, and identification of equipment that can be implemented or used in the event of a terrorist attack on the water system. CVWD has also provided a copy of the ERP to the local California Department of Health Services (CDHS) Drinking Water Field Operations Branch District Office.

1.4 Access Control

Because of the sensitive nature of the information contained in this ERP, an access control protocol has been established under the direction of the CVWD Security Director (SD). Distribution of the ERP is limited to those individuals directly involved in CVWD's emergency planning and response activities. The ERP copies are numbered prior to distribution, and recipients are required to sign and date a statement that includes their ERP number and their agreement not to reproduce the ERP without permission from the CVWD SD. A secure copy of the ERP is maintained in an off-premises location, known to CVWD's SD, in the event that the utility's copies cannot be accessed.

1.5 Plan Overview

This ERP is organized into eight sections and appendices, as described below:

Section 1.0: Introduction: Describes the purpose, goals, regulatory requirements, access control protocol, and overall organization of the ERP.

Section 2.0: Emergency Planning Process Information: Describes CVWD's emergency planning partnerships, mutual aid agreements, emergency response policies, procedures and documents, and summarizes the scenarios from the VA that are addressed in the ERP.
Section 3.0: Water System Information: Provides specific information about CVWD’s water system, identifies emergency resources, and identifies alternate and backup water sources.

Section 4.0: SEMS/ICS Integration and Organization: Presents emergency response chain-of-command and information and describes how CVWD will use the Standardized Emergency Management System/Incident Command System (SEMS/ICS) system to manage emergencies.

Section 5.0: Concept of Operations: Describes CVWD’s policies, procedures, and plans to mitigate emergency incidents, including how threats may be received into the utility, ERP activation, response capabilities, personnel safety provisions, and protective action protocols.

Section 6.0: Communications Procedures: Describes CVWD’s chain of command and provides notification procedures and contact lists for internal and external contacts, including public notice procedures.

Section 7.0: Water Quality Sampling: Includes information and procedures regarding water quality sampling procedures and equipment. Also provides information on available laboratory resources in California.

Section 8.0: Emergency Response, Recovery, and Termination: Describes the three phases of an emergency: response, recovery, and termination. General actions and guidance is provided for each phase, and these procedures should be used in conjunction with the specific action plans in Appendix A.

Section 9.0: Emergency Response Plan Approval, Update, Training, and Exercises: Describes the emergency response training program and the ERP review, approval, and update processes.

Section 10.0: References and Links

Appendices:
A. Action Plans
B. System and Facility Information
C. Emergency Phone Lists
D. Public Notices and Press Releases
E. CA Statewide Emergency Notification Plan
F. Incident Reports and Forms
G. ERP Certification Form

2.0 Emergency Planning Process Information

This section presents the CVWD planning partnerships and discusses the relationship between this ERP and other CVWD related plans.

2.1 General Information

2.1.1 Planning Partnerships
CVWD has established emergency planning partnerships with other parties who have agreed to help the utility in an emergency situation. A list of these agencies and a brief description of their emergency capabilities is provided below.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Capability</th>
</tr>
</thead>
</table>
| Santa Barbara County OES | - SBCO Fire
| | - Mobile Command Center, OES training |
| Carpinteria Summerland Fire District | - Fire Department Capabilities
| | - Emergency Medical Technician |
| | - Paramedic Unit |
| | - HAZMAT capabilities |
| Santa Barbara County Sheriff| - Crowd containment |
| | - Traffic control |
| | - Civil unrest |
| | - Bomb Squad Unit |
| | - Aerial surveillance |
| | - K9 Search Rescue |
| | - Dive team |
| | - Mounted Patrol |
| Santa Barbara County Health Department | - Collection and dissemination of data on the spread of waterborne toxins or disease through the water system. |
| California Department of Health Services- Drinking Water program | - Provide extended water analysis. Provide decision support. |
| CDHS – Drinking Water Program (State Drinking Water Primacy Agency) | - Issue directives regarding public health and drinking water. |
| Carpinteria Summerland Fire District | - Hazmat containment
| | - Hazmat cleanup |
| Fruit Growers Labs | - Chemical, biological and radioactivity analysis |
| San Bernardino Clinical Labs | - Chemical, biological and radioactivity analysis |
| Montecito Water District | - Immediate assistance for water related emergencies |
| Casitas Water District | - Immediate assistance for water related emergencies |
| Santa Barbara Water District | - Immediate assistance for water related emergencies |

2.1.2 Other Agencies

Montecito Water District

Casitas Water District

Santa Barbara Water District

Immediate assistance for water related emergencies

Manpower

Parts and equipment
2.0 EMERGENCY PLANNING PROCESS INFORMATION

In the event of an attack on the water system, some or all of these agencies, as well as other state and federal agencies, may be called upon for assistance. A complete list of emergency response agencies with their telephone contact numbers is provided in Section 6.3.3.

2.1.2 Mutual Aid Agreements
In addition to the partnerships outlined above, CVWD has established mutual aid agreements with the following organizations:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Nature of Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinto Petroleum</td>
<td>Agrees to supply fuel for fleet trucks as needed during an Incident.</td>
</tr>
<tr>
<td>McCormix Oil</td>
<td>Agrees to provide fuel every 24 hours as needed for backup generator upon loss of power.</td>
</tr>
<tr>
<td>Colson's Towing</td>
<td></td>
</tr>
<tr>
<td>Montecito Water District</td>
<td>Agrees to supply water as described in Emergency Interconnection Agreements</td>
</tr>
<tr>
<td>Casitas Water District</td>
<td></td>
</tr>
<tr>
<td>Macroautomatics Inc</td>
<td>Agrees to assist during an actual attack on the Supervisory Control and Data Acquisition (SCADA) or Information Technology (IT) system if possible as well as to assist in the recovery of data and gathering evidence for prosecution.</td>
</tr>
<tr>
<td>Lanspeed Systems</td>
<td></td>
</tr>
</tbody>
</table>

2.1.3 Relationship Between ERP and Other Plans
This ERP is intended to assist CVWD’s managers and staff in responding to emergencies and malevolent acts (i.e., attacks) that affect the water system. The ERP is supplemented and referenced by the plans, procedures, policies and agreements shown in the table below.

<table>
<thead>
<tr>
<th>Document</th>
<th>Relationship to ERP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Management Plan (RMP)</td>
<td>This document may contain responses to hazardous chemical releases, such as chlorine. There is no RMP for CVWD to date.</td>
</tr>
<tr>
<td>Material Safety Data Sheets (MSDS)</td>
<td>These are standard data sheets that may contain information regarding responses to specific chemical releases as well as a host of other useful information. Located in file cabinet in District Superintendent’s office.</td>
</tr>
<tr>
<td>Water Sampling Plan</td>
<td>This document may provide useful information to support the contamination event stages evaluation as well as to provide information for the baseline analysis or provide conditions that are considered normal for your utility.</td>
</tr>
<tr>
<td>Water Sample Chain of Custody Procedures</td>
<td>This document(s) may ensure that water samples are protected and properly handled so as to preclude contamination from the sampling process.</td>
</tr>
</tbody>
</table>

2.2 Disaster Events or Scenarios
Specific A Ps have been developed to address each of the high-risk threat scenarios identified in CVWD’s vulnerability assessment. A Ps are tailored ERP actions that address specific major events. For security reasons, the procedures outlined in these documents are intentionally general in nature, omitting confidential details and effected assets. The specific A Ps are attached in the appendices following this main ERP document.

2.2.1 Natural Disasters
CVWD has considered the threats posed by natural events and weather-related phenomena. Specific AP(s) have been developed to guide a timely and prudent response should such threats be realized. These detailed APs are found in the attached appendices. Considered natural disasters include:

<table>
<thead>
<tr>
<th>Natural Disaster</th>
<th>Primary AP No.</th>
<th>Secondary AP No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter Storm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsunami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Outage</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
2.2.2 Events Caused by Human Intervention (Man-made Threats)

CVWD has developed specific AP documents, found in the appendices, to respond to the following threats that were identified in the vulnerability analysis:

<table>
<thead>
<tr>
<th>Event / Threat</th>
<th>Primary AP No.</th>
<th>Secondary AP No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat of Contamination to Water System</td>
<td>1A</td>
<td>1B</td>
</tr>
<tr>
<td>Confirmed Contamination to Water System</td>
<td>1C</td>
<td>1B</td>
</tr>
<tr>
<td>Structural Damage from Explosive Device</td>
<td>2</td>
<td>1A</td>
</tr>
<tr>
<td>Employee Assaulted with Weapon (Armed Intruder)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SCADA System Intrusion</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>IT System Intrusion</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Release</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Water Supply Interruption</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Bomb Threat</td>
<td>10A</td>
<td>10B, 10C</td>
</tr>
</tbody>
</table>

3.0 Water System Information

This section presents the core elements of the CVWD ERP, including the system-specific information, roles and responsibilities in an emergency, communication procedures, personnel safety, identification of alternate water sources, emergency and chemical supplies, and property protection.

3.1 System Specific Information

This section contains the CVWD Public Water System (PWS) identification and emergency contacts, as well as basic information to describe the water system.

<table>
<thead>
<tr>
<th>System Identification Number</th>
<th>4210001</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name and Address</td>
<td>Carpinteria Valley Water District</td>
</tr>
<tr>
<td></td>
<td>1301 Santa Ynez Ave</td>
</tr>
<tr>
<td></td>
<td>Carpinteria, CA 93013</td>
</tr>
<tr>
<td>Directions to District Office</td>
<td>Located at the corner of Santa Ynez Avenue and Via Real Ave.</td>
</tr>
<tr>
<td>Number of Service Connections/Population Served</td>
<td>4,000 service connections / 18,500 population</td>
</tr>
<tr>
<td>Type of Source</td>
<td>Groundwater Wells</td>
</tr>
<tr>
<td>Interconnections and Purchased Water Agreements</td>
<td>One interconnection for 2813 AFY, USBR agreement for 2200 AFY, State Water Project Agreement for 2200 AFY</td>
</tr>
<tr>
<td>Type of Treatment Provided</td>
<td>Disinfection treatment is provided for groundwater sources. Fe/Mn treatment is also provided at 3 Wells. (High School, El Carro, & HQ)</td>
</tr>
<tr>
<td>Number of Storage Tanks</td>
<td>0 Raw Water Tanks / 4 Treated Water Tanks</td>
</tr>
<tr>
<td>Average Water Demand</td>
<td>4 MGD</td>
</tr>
<tr>
<td>Maximum and Peak Water Demand</td>
<td>10 MGD / 9,000 gpm peak</td>
</tr>
<tr>
<td>Charles Hamilton</td>
<td>General Manager</td>
</tr>
<tr>
<td>Bob McDonald</td>
<td>District Engineer</td>
</tr>
</tbody>
</table>
3.2 General System Map/Service Area Map

The following maps and drawings of the CVWD's system are provided below (or in Appendix B) for reference.

3.2.1.1 Distribution System Map
See Appendix B

3.2.1.2 Pressure Boundary Map
See Appendix B

3.2.1.3 Site Plans and Facility “As-Built” Engineering Drawings

3.2.1.4 Operating Procedures and System Descriptions including Backup Systems
See Appendix B

3.2.1.5 SCADA System/Process Control Systems Operations
A top level schematic of the SCADA system has been included in this document and is provided for reference, as follows:

Scada diagram here

3.3 Critical System Components

Included below is an outline of system components deemed critical to operation of CVWD. Information on the location of the asset is included, as well as descriptive information such as entry restrictions or special equipment or tool needs.

<table>
<thead>
<tr>
<th>Asset Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset</td>
</tr>
<tr>
<td>Cater Treatment Plant</td>
</tr>
<tr>
<td>Ortega Reservoir Chlorinator Station</td>
</tr>
<tr>
<td>Carpinteria Reservoir Chlorinator Station</td>
</tr>
<tr>
<td>Well Chlorinator Stations</td>
</tr>
<tr>
<td>Well Chlorinator Stations</td>
</tr>
<tr>
<td>Well Chlorinator Stations</td>
</tr>
<tr>
<td>South Coast Conduit</td>
</tr>
<tr>
<td>Lateral 30 Pump Station</td>
</tr>
<tr>
<td>Shepard Mesa Pump Station</td>
</tr>
<tr>
<td>Shepard Mesa Tank</td>
</tr>
<tr>
<td>Gobernador Reservoir</td>
</tr>
<tr>
<td>Carpinteria Reservoir</td>
</tr>
</tbody>
</table>

3.4 Identification of Alternate Water Sources

3.4.1 Alternate Raw Water Sources
CVWD has 3 alternate and independent raw water sources:

- Water source 1 – Lake Cachuma Water
- Water source 2 – Local Ground Water
- Water source 3 – State Water Project

Each of these raw water services can supplement the water supply if the other sources are compromised.

3.4.2 Interconnects and Agreements with Other Utilities

There are 2 other water utilities within the regional area, Casitas Municipal Water District & Montecito Water District.

These water utilities have their own water supply and treatment systems. To enable CVWD to have uninterruptible water service capability, interconnect valved connections from CVWD's water distribution system to Casitas Municipal Water District & Montecito Water District are in place and are currently maintained by CVWD. The valves also enable CVWD to serve as an alternate water source for both Casitas Municipal Water District & Montecito Water District if needed.
3.4.3 Water Sources for Short-term Outages
Possible alternate water supply options for short-term outages include:

- Short-term water supply options
 - Vons or Albertsons
 - Arrowhead Water Service

Additional water supply equipment is available from:

- Emergency water supply equipment sources
 - Goleta Water District
 - City of Santa Barbara
 - Montecito Water District
 - Casitas Municipal Water District

3.5 Emergency Water Supply calculations

3.5.1 Amount of Water Needed for Various Durations
Typical residential water usage in the United States is on the order of 300 to 500 gallons per residence per day, or 100 to 150 gallons per capita per day. Although these amounts can typically be significantly reduced during crisis situations, CVWD has found it useful to develop an estimate for the quantity of supplemental water required for a number of potential outage scenarios. These estimates are as follows:

<table>
<thead>
<tr>
<th>Outage Period</th>
<th>Number of Customers (Service Connections) Affected</th>
<th>Quantity Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 week</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.2 Estimated Emergency Supply of Water
CVWD has estimated the amount of water storage available in the system under an emergency situation according to the following formula:

\[
\text{Emergency supply of water} = \frac{\text{amount of storage + backup/emergency supply}}{\text{system demand}}
\]

Calculations for CVWD:

<table>
<thead>
<tr>
<th>Equipment/Supply Description</th>
<th>Location</th>
<th>Specific Function & Capability</th>
<th>Responsible Person/Title</th>
<th>Telephone Number</th>
<th>Inventory/Restocking Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Equipment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dump Trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skip Loaders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backhoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dozers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Communication Equipment:

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
<th>Specific Function & Capability</th>
<th>Responsible Person/Title</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable Radios</td>
<td>Sun Coast Rentals</td>
<td></td>
<td>David</td>
<td>805-604-0200, 857-7795, 684-4173 or 896-4109 h, 692-4943</td>
</tr>
<tr>
<td>Radio Batteries</td>
<td>Sun Coast Rentals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Equipment:

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
<th>Specific Function & Capability</th>
<th>Responsible Person/Title</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Compressors</td>
<td>Sun Coast Rentals</td>
<td></td>
<td>Don Godley</td>
<td>805-604-0200, 857-7795, 684-4173 or 896-4109 h, 692-4943</td>
</tr>
<tr>
<td>Fans and Blowers</td>
<td>Sun Coast Rentals</td>
<td></td>
<td>Don Godley</td>
<td>805-604-0200, 857-7795, 684-4173 or 896-4109 h, 692-4943</td>
</tr>
<tr>
<td>Generators</td>
<td>Sun Coast Rentals</td>
<td></td>
<td>Don Godley</td>
<td>805-604-0200, 857-7795, 684-4173 or 896-4109 h, 692-4943</td>
</tr>
<tr>
<td>Shop Vacuums</td>
<td>Sun Coast Rentals</td>
<td></td>
<td>Don Godley</td>
<td>805-604-0200, 857-7795, 684-4173 or 896-4109 h, 692-4943</td>
</tr>
<tr>
<td>Pumps</td>
<td>Sun Coast Rentals</td>
<td></td>
<td>Don Godley</td>
<td>805-604-0200, 857-7795, 684-4173 or 896-4109 h, 692-4943</td>
</tr>
</tbody>
</table>

Personnel Protective

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
<th>Specific Function & Capability</th>
<th>Responsible Person/Title</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCBA</td>
<td>Safety Tek Rental, Sales & Delivery</td>
<td>Priority safety</td>
<td>Phil Saunders, Ernesto</td>
<td>797-1675, 844-0458</td>
</tr>
<tr>
<td>Tyveks</td>
<td>Safety Tek Rental, Sales & Delivery</td>
<td>Priority safety</td>
<td>Phil Saunders, Ernesto</td>
<td>797-1675, 844-0458</td>
</tr>
<tr>
<td>Boots</td>
<td>Safety Tek Rental, Sales & Delivery</td>
<td>Priority safety</td>
<td>Phil Saunders, Ernesto</td>
<td>797-1675, 844-0458</td>
</tr>
<tr>
<td>Respirators</td>
<td>Safety Tek Rental, Sales & Delivery</td>
<td></td>
<td>Phil Saunders, Ernesto</td>
<td>797-1675, 844-0458</td>
</tr>
<tr>
<td>Cartridges</td>
<td>Safety Tek Rental, Sales & Delivery</td>
<td></td>
<td>Phil Saunders, Ernesto</td>
<td>797-1675, 844-0458</td>
</tr>
<tr>
<td>Gloves</td>
<td>Safety Tek Rental, Sales & Delivery</td>
<td></td>
<td>Phil Saunders, Ernesto</td>
<td>797-1675, 844-0458</td>
</tr>
</tbody>
</table>

Bulk Supplies:

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
<th>Specific Function & Capability</th>
<th>Responsible Person/Title</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>SP Milling Hanson Aggregates Sales and Delivery</td>
<td></td>
<td></td>
<td>485-3101</td>
</tr>
<tr>
<td>Absorbents</td>
<td>Priority safety/ACTI</td>
<td></td>
<td>Phil Saunders</td>
<td>797-1675</td>
</tr>
</tbody>
</table>

Note: The table continues on the next page with similar entries for Communication Equipment.
3.6.2 Personnel Protective and Other Emergency Equipment

CVWD has established written procedures for using and maintaining emergency response equipment. These procedures apply to any emergency equipment relevant to a response involving a toxic chemical, including all detection and monitoring equipment, alarms and communications systems, and personnel protective equipment not used as part of normal operations. Summary procedures are listed below:

- How and when to use the equipment properly.
- How and when the equipment should receive routine maintenance.
- How and when the equipment should be inspected and tested for readiness.
- Training requirements.

3.6.3 Telephone Equipment

Standard land-based telephones are potentially useful for communication during an emergency. CVWD has plans to install an emergency telephone services at critical locations to serve as a critical connection during a business disruption or an employee emergency. Emergency telephones of this kind, which directly connect to the security desk, are primarily used for safety and security purposes. At CVWD these are located at Lyons Well, Carpinteria Reservoir, High School Well, and the proposed 3 MG tank.

In general, during an emergency, use of telephones will be minimized. If employees see telephones off the hook they should hang them up. This will help the telephone company to restore service.

3.6.4 VHF Radio Communications

Specific instructions will be provided by CVWD's Command Center on the operation and prioritization of Utility radio facilities. It is important to note that radio communications are NOT SECURE; therefore, radios must not be used to transmit sensitive messages or data that is not ready for public release or would give advantage to an attacker. For this reason, it is anticipated that radios will be of limited use during an attack on the water system, unless there is a loss of off-site power or other event affecting the land-based and cell phone service.

3.6.4.1 VHF Communications Channel

<table>
<thead>
<tr>
<th>Channel</th>
<th>Use Group / Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>

3.6.4.2 Trunked Radios (Mobile)

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Storage Location</th>
<th>EOC Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6.5 Citizen’s Band Radio / Military Radios

It may be necessary to request assistance from CB radio operators or the military, if other systems are not available.

CVWD is aware that CB and most readily-available military radios do not provide secure communication.

3.7 Property Protection

In the event of a real or potential malevolent event, the Water Utility Emergency Response Manager (WUERM) will make the determination as to what water system facilities should be immediately “locked down,” including the implementation of specific access control procedures and the establishment of a security perimeter. The possibility of secondary malevolent events will be considered, given that the initial act may be diversionary. CVWD personnel involved in an emergency response will take all necessary measures to protect potential evidence for law enforcement, should the event be declared a crime scene.

Specific lockdown procedures for each of CVWD’s major facilities are:

- **Headquarter/ District Offices:** In the event of an evacuation the District Engineer shall lock down the administration building after all personnel have been accounted for and the Operations Manager shall lock down the operations building after all his personnel have been accounted for. If the GM or SD designates an incident that requires facilities be locked down the WUERM shall direct the required personnel to check and secure these facilities if necessary.

- **Well sites:** Well sites are typically locked down when there are no personnel at the site. In the event that the GM or SD designates an incident that requires facilities be locked down the WUOCM shall direct the required personnel to check and secure these facilities if necessary.

- **Reservoir:**
3.0 WATER SYSTEM INFORMATION

4.0 SEMS/ICS Integration and Organization

The Standardized Emergency Management System is the system required by Government Code §8607(a) for managing response to multi-agency and multi-jurisdiction emergencies in California.

4.1 Five Levels of SEMS

There are five designated levels in the SEMS organization, as shown below. When resources become depleted or are not available at the field or local level, requests for resources are moved up through these levels until they are filled.

The type and severity of the incident determines the extent of activation for each level.

Field Response: The Field Response Level is where the Incident Command System is applied. At this level, emergency response personnel and resources are managed under ICS to carry out tactical decisions and activities in direct response to an incident or threat.

Local Government: Local Government includes City of Carpinteria, Santa Barbara County, Carpinteria School District, and Carpinteria Sanitary District, Carpinteria Summerland Fire District, Carpinteria Cemetery District, and Carpinteria Valley Water District.

Operational Area: The Operational Area concept represents the intermediate level of the state’s emergency organization, consisting of county and all political subdivisions, including water districts and other special districts, within the county area.

Regional: Because of its size and geography, the state of California has been divided into six mutual aid regions by the Governor’s OES. In SEMS, the regional level manages and coordinates information and resources among operational areas within the mutual aid region and also between the operational areas and the state level.

State: The state level manages and coordinates state resources in response to the emergency needs of the other levels. This level manages and coordinates mutual aid among the mutual aid regions and between the regional and state levels. The state level also serves as the coordination and communication link between the state and federal disaster response system.

4.2 Five Principle Functions of SEMS

There are five principle functions within SEMS at each of the five organizational levels. They are Management (“Command” at the Field Level), Operations, Planning/Intelligence, Logistics, and Finance/Administration. These functions are modular in their design and can expand or contract depending on the needs of the incident.

A summary of the functions and the responsibilities of each section, as they relate to CVWD’s Operations during an emergency, is provided in the table below.
4.0 SEMS/ICS INTEGRATION AND ORGANIZATION

Function	Responsibilities
Management | • Serves as Command Staff and/or Incident Commander at the Field Level.
• Directs Water System Emergency Operations Center (EOC).
• May Serve as WUERM.

Operations | • Responsible for management of all operations directly applicable to the primary mission.
• Operations Section Chief activates and supervises organizational elements in accordance with incident AP and directs execution of the AP.
• Coordinates emergency response activities at the water utility EOC level.
• Implements priorities established by management or Incident Command.
• Field Coordinators
 - Operations staff who are linked to water utility personnel at other fixed facilities or who are assigned to incidents within the water utility.
 - Receive and pass information up the chain of command.
 - Receive and coordinate requests for services and support.

Planning/Intelligence | • Oversees the collection, evaluation, verification, and display of current information related to the emergency.
 - Understand current situation.
 - Predict probable course of the incident events.
 - Prepare alternative strategies and control operations for the incident.
• Responsible for preparing action plans and maintaining documentation related to the emergency.

Logistics | • Provides facilities, services, and material in support of the Incident.
• Oversees the acquisition, storing, and distribution of essential resources and support services needed to manage the emergency.
• Tracks the status of resources.
• Provides services to all field units in terms of obtaining and meeting their personnel, materials and equipment needs including communications.

Finance/Administration | • Responsible for all financial, administrative and cost analysis aspects of the incident.
• Prepares vendor contracts, maintains records of expenditures for personnel and equipment, and maintains records and processes claims.
• Provides preliminary estimates of damage costs and losses.

4.3 CVWD Incident Command Structure

The following graphics illustrate the expanding nature of the ICS and show model ICS structures that can be used during an emergency. The intent is for the command structure to be expanded and contracted as necessary to provide the best fit for a particular situation. This template includes three different command structures for different-sized utilities, and for different levels of emergencies. Choose the template or templates that work best for your utility and edit them as necessary. Individual’s names can be added to the graphics to designate specific roles and responsibilities.

EXAMPLE OF SMALL WATER UTILITY UTILIZING A SEMS ORGANIZATION CHART
Depending on the size and scope of the emergency, the Water Utility Emergency Response Manager (WUERM) may serve as the Emergency Operations Center Director until the position is delegated to a general manager or replacement for the duration of the incident.
4.4 Emergency Operations Center

4.4.1 EOC Description

CVWD's

Emergency Operations Center (EOC) is a designated facility to coordinate the overall response and support to an emergency. The primary EOC is located at the Water District Administrative Offices at 1301 Santa Ynez, Carpinteria CA. CVWD has also identified and stocked an alternate EOC in the event that the primary EOC is not available or rendered unusable by the emergency. The alternate EOC location is at the City Hall at 5101 Carpinteria Avenue.

During an emergency situation, the EOC will:

- Establish an EOC Director to manage the Operations, Planning/Intelligence, Logistics, Finance/Administration Sections, and related sub-functions.
- Set priorities and develop APs.
- Coordinate and support all field-level incident activities within the utility service area.
- Gather, process, and report information within the utility service area and to other levels of SEMS.
- Coordinate with local government, operational areas, or regional EOCs as appropriate.
- Request resources from higher SEMS levels.

The EOC has sufficient communication equipment (phones, computer, two-way, etc.), copies of all engineering and operational plans and procedures for the CVWD, chalk or white boards, and tables and chairs sufficient to meet the needs of any on-site emergency.

4.4.2 EOC Activation

In the event a credible or confirmed threat has been established, the CVWD staff will notify the SD and/or the General Manager (GM) or designated alternate. The SD/GM or alternate should then make the decision to activate the EOC. Once the decision to activate the EOC has been made, subsequent notification to the Local Government Agency should be made to notify the agency of the threat and the activation of the CVWD EOC.

Based on the severity of the incident, the GM or designee may also recommend that the Local Government EOC be activated.

Once the Local Government has been notified of the threat and the CVWD EOC activation, the CVWD EOC designee should provide immediate, specific information to the relevant agencies by telephone. If telephone communications are out of service emergency radios shall be used.

5.0 Concept of Operations

5.1 Decision Process

This section defines the decision process to be followed to determine if and when the ERP should be activated.

5.1.1 Threat Warning

The "threat warning" is the initial occurrence or discovery that triggers an evaluation of whether or not to activate the ERP. A description of the possible types of threat warnings that CVWD may encounter is provided below. If any of these conditions are met, then a Threat Warning will be issued by the GM.

FIGURE 1
Summary of Potential Threat Warnings

5.1.1.1 Threat Warning Conditions

- **Security Breach**: Physical security breaches caused by relaxed operations, such as unsecured doors or criminal acts such as trespassing, are probably the most common threat warnings.
- **Witness Account**: Employees or neighbors may see suspicious activity, such as trespassing, breaking and entering, and other types of tampering, that they report to local law enforcement.
- **Public Health Information**: Information from public health agencies about potential threats to public health.
- **Consumer Complaint**: Complaints from customers about water quality or other concerns.
- **Notification by Perpetrator**: Contact from the perpetrator of a crime or threat.
- **Notification by Law Enforcement**: Information from law enforcement agencies about potential threats.
- **Unusual Water Quality**: Monitoring or testing results indicating unusual water quality.
- **Notification by News Media**: Reports from news media about potential threats.
Notification by Perpetrator. A threat may be made directly to the water utility, either verbally or in writing. Historical incidents would indicate that verbal threats made over the phone are more likely than written threats.

Notification by Law Enforcement. CVWD may receive notification about a threat directly from law enforcement. Such a threat could be a result of a report of suspicious activity or gathered by law enforcement intelligence.

Notification by News Media. A threat to contaminate the water supply might be delivered to the news media, or the media may discover a threat. A conscientious reporter should immediately report such a threat to the police, and either the reporter or the police would immediately contact the water utility.

Unusual Water Quality. All unusual changes in water quality should be investigated. Results should be ruled out that can be explained by the analytical detection method or on-line monitoring system (i.e., false positives/false negative, known interferences, instrument reliability) or results from a known cause (e.g., overdosing of coagulant).

Consumer Complaint. An unexplained or unusually high incidence of consumer complaints about the aesthetic qualities of drinking water may indicate potential contamination. Many chemicals can impart a strong odor or taste to water, and some may discolor the water.

Public Health Notification. The first indication that contamination has occurred may be victims showing up in local emergency rooms and health clinics. An incident triggered by a public health notification is unique in that at least a segment of the population has been exposed to a harmful substance.

5.1.2 ERP Activation
Once a threat warning is issued by the GM or his/her designee, the threat decision process begins. The WUERM or designated alternate should immediately be notified since this person will be involved in this decision process.

The threat decision process is considered in three successive stages: “possible,” “credible,” and “confirmed.” As the threat escalates through these three stages, the actions that might be considered also change. The following table describes the stages, actions that will be taken, and activation of the ERP. The WUERM is responsible for working through the threat decision process and implementing the ERP as needed.

<table>
<thead>
<tr>
<th>Decision Process Stage</th>
<th>Actions Taken</th>
<th>ERP Activation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Evaluate available information. Review findings from VA. Determine if threat is possible. (Could something have actually happened?)</td>
<td>Implement precautionary response actions.</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Determine that threat is credible by establishing corroborating information.</td>
<td>Activate portions of ERP. Initiate internal and external notifications.</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Confirm threat by verifying definitive evidence and information that establishes the major event. Perform water sampling and analysis.</td>
<td>Fully implement ERP. Immediately initiate appropriate APs. Fully activate CVWD EOC.</td>
</tr>
</tbody>
</table>

5.2 Response Capability Identified in the Water System VA
This section describes the response capabilities for CVWD that were identified in the water system VA.

<table>
<thead>
<tr>
<th>Response Type</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedures</td>
<td>Emergency Operating Procedures</td>
<td>A set of procedures that define employee responses to specific types of emergency events.</td>
</tr>
<tr>
<td>Procedures</td>
<td>Coordination with Local Police Force</td>
<td>An agreement with local law enforcement units regarding the support the utility can expect from the agency and the type of training and support the utility will provide to responding police agencies.</td>
</tr>
<tr>
<td>Communication</td>
<td>Public Address or Other Warning System</td>
<td>Used to notify people within a facility of an incident. Should a building or entire facility need to be evacuated, it is important to have a means by which everyone can be notified.</td>
</tr>
<tr>
<td>Mitigation</td>
<td>Fire Brigade at the Plant</td>
<td>Training and equipping a group of first responders from the plant population.</td>
</tr>
</tbody>
</table>

5.3 Personnel Safety
The safety of CVWD staff, emergency responders, and the public is paramount during an emergency. This section provides basic safety information and procedures to be followed in an emergency, including a toxic or potentially toxic release of chlorine or other chemical agents from a water treatment plant. Additional information regarding proper procedures...
during and after a chemical release can be found in CVWD's Risk Management Plan and in the associated AP. This section will cover Facility Protective Actions, Personnel Accountability, Public Notification for Protective Actions, and Emergency First Aid procedures.

5.3.1 Facility Protective Actions
Facility protective actions include sheltering-in-place, evacuation, and a combination of the two. When determining the appropriate protective action decision, the CVWD GM/SD or designee will carefully consider:

- If a hazardous material is involved, its characteristics, amount, release rate, physical state, ambient temperature, and location
- The employees at risk and the capability and resources to recommend a protective action.
- The time factors involved in the emergency and their effect on the selected protective action.
- The effect of the present and predicted meteorological conditions (on the control of the hazardous material, storm warnings, flood stage level, etc.) and the feasibility of the protective actions.
- The capability to communicate with both the employees at risk and emergency response personnel before, during, and after the emergency.
- The capabilities and resources of the facility to implement, control, monitor, and terminate the protective action.

5.3.1.1 Evacuations
Facility evacuation should follow the pre-designated evacuation routes from buildings and plant grounds as shown in Appendix B. These evacuation routes are posted in the Board Room, on the bulletin board in the main office and in the operations building. Additionally lighted exit signs are located at each exit.

If an evacuation is ordered by the GM/SD, all employees shall report to the pre-designated assembly areas shown on the evacuation plans to be accounted for by their supervisor.

Supervisors are responsible to assure their disabled employees are provided with adequate assistance during the evacuation.

5.3.1.2 Sheltering-in-place
Sheltering in place should occur in the pre-designated facilities and locations as described in Section 5.5.1 and as shown in Appendix B.

Locations should be equipped with emergency medical supplies and provisions.

5.3.2 Personnel Accountability
- All designated assembly areas are indicated on the facility evacuation plans.
- All personnel are responsible to report to their designated assembly area.
- Supervisors are responsible to assure all their personnel have reported after an ordered evacuation.
- Personnel who are not accounted for at the assembly area must be reported to the GM/SD to assure a proper response is coordinated. This response may include checking with other assembly areas, radio communication, or organization of a formal search.
- No search of a contaminated area should be performed unless all rescue personnel are fully equipped and trained for the expected hazards.

5.3.3 Off-site Protective Actions
Some hazardous materials hazards have the potential to affect off-site personnel and the local response agency may request support in making protective action decisions for the general public surrounding your facility.

CVWD will respond to requests from the local agencies for recommendations, or protective actions for the general population surrounding the facility.

5.3.4 First Aid and Emergency Medical Treatment
- Call 911 for medical assistance.
- Assure emergency medical care is provided to injured persons, as necessary until off-site medical personnel arrive.
- If trained, provide emergency first aid for victims of heart attack, strokes, severe bleeding, and shock.
- GM/SD should designate a supervisor to coordinate off-site ambulance and medical assistance.
- Victims may need to be decontaminated if the emergency involves hazardous material.
- Control the scene to avoid further spread of contamination.
- Obtain accurate information on the health hazards of the material from Local Emergency Response Team, Safety Officer, MSDSs, or the Poison Control Center.
- Determine if there is a risk of secondary contamination to personnel or emergency transport vehicles/hospitals.
- If needed, follow your pre-determined decontamination protocol, which should include removing wet or exposed clothing, flushing affected skin and hair with water, and using soap or shampoo for oily substances.
- Provide post-emergency medical evaluation as required by Occupational Safety and Health Administration (OSHA).
5.4 Protective Action Protocols

5.4.1 Sheltering-in-Place Protocol

Evacuation during emergency incidents is sometimes, but by no means always, necessary. The emergency situation can escalate so rapidly that there would be no time to evacuate personnel. For hazardous weather conditions, a prudent course of action, for the protection of the potentially-affected employees/personnel, would be to remain inside with the doors and windows closed.

General Public (Responsibility of Local Public Responders)

Although protective actions for the general public are the responsibility of the Local Government, this information may be helpful if you are requested to provide recommendations to the local Incident Commander.

- Door-to-door: Requires significant personnel and a slow process but is very thorough.
- Public address system (from a mobile unit or within a building): Requires fewer personnel than door-to-door and is quicker to accomplish but is not as thorough.

5.4.2 Evacuation Procedures

This evacuation procedure identifies the areas to be evacuated, as well as the warnings and instructions to personnel that must be provided. The evacuation plan should be developed by the Incident Commander and will be incident and site-specific. The evacuees should be told to report to their designated assembly areas and wait for further instructions.

5.4.3 Evacuation Assembly Areas

- Parking Lot 1 for front office personnel
- Parking Lot 2 for operations personnel

Each manager/supervisor shall be responsible for head counts, assembly security and safety, and will communicate with the Incident Commander to obtain support for various needs, such as food, water, medical aid, or transportation.

5.4.4 Shelter Locations

As necessary, the INCIDENT COMMANDER will select the most appropriate shelter from pre-designated shelter areas. Each manager/supervisor shall be responsible for head counts, assembly security and safety.
5.0 CONCEPT OF OPERATIONS

In general, communications during an emergency will proceed along the chain of command of the SEMS/ICS. The number of people notified will increase as the incident expands and decrease as the incident contracts toward its conclusion.

The type and extent of the disaster will dictate the normal and/or alternative methods of communication that will be used. The possibility of a coordinated attack that targets the facility will require that coordination, if not predetermined, be quick and effective. The communications coordinator will be responsible to assume that some methods of communication will either be unavailable or limited to certain areas during an emergency. It is anticipated that employees will know upon arrival at their duty stations which communication systems are functional and which are not. This information should be relayed to the CVWD Information Officer upon discovery.

6.0 Communication Procedures

6.1 CVWD Chain of Command

<table>
<thead>
<tr>
<th>Name and Title</th>
<th>Responsibilities during an Emergency</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Hamilton</td>
<td>Incident Commander
Sets incident objectives and priorities.
Responsible for management of incident.
Coordinates all emergency response activities between agencies.
Communicates with all outside agencies.</td>
<td>Office: 805-684-2816
Cell: 805-331-0128
Home: 805-560-0927</td>
</tr>
<tr>
<td>Charles Hamilton</td>
<td>Water Utility Emergency Response Manager
Overall management and decision making for the water system.
WUERM is lead for managing the emergency and contacting the regulatory agencies.
All communications to external parties are approved by the WUERM.</td>
<td>Office: 805-684-2816
Home: 805-560-0927</td>
</tr>
</tbody>
</table>
Bob McDonald
Alternate WUERM
Takes over for primary WUERM if primary WUERM is unavailable.
Office: 805-684-2816
Cell: 805-512-0312
Home: 805-649-0734

Omar Castro
Water Utility Emergency Operations Center Manager (WUOCM)
Heads water utility’s EOC. Provides operational and resource management during an emergency.
Office: 805-684-2816
Cell: 805-331-0049
Home: 805-640-0778

Charles Hamilton
Public Information Officer (PIO)
Member of the command staff and reports directly to the Incident Commander. Interfacers with media and disseminates public information. Plans the information strategy.
Office: 805-684-2816
Cell: 805-331-0128
Home: 805-560-0927

Bob McDonald
Liaison Officer
On-scene contact for representatives from other agencies.
Office: 805-684-2816
Cell: 805-512-0312
Home: 805-649-0734

Omar Castro
Safety Officer
Develops and recommends measures for assuring personnel safety. Assesses and anticipates hazardous and unsafe conditions.
Office: 805-684-2816
Cell: 805-331-0049
Home: 805-640-0778

Norma Rosales
Office Administrator
Responsible for administrative functions in the office. Receives customer phone calls and maintains a log of complaints and calls. In an emergency, could provide a standard carefully pre-scripted message for customers who call with general questions.
Office: 805-684-2816
Cell: 805-896-1350
Home: 805-641-1458

Brian King
Technical Specialist
Water System Operator
In charge of operating the water system. Performs inspections, maintenance, sampling of the system and relaying critical information to the WUERM. Assesses facilities and provides recommendations to the WUERM.
Office: 805-684-2816
Cell: 805-331-0019
Home: 805-898-3825

Danny Rada
Technical Specialist
Field Staff
Delivers water quality notices or door hangers. Provides backup to water system operator. Conducts site inspections of all facilities.
Office: 805-684-2816
Cell: 805-560-6953

6.2 Drinking Water Field Operation Branch – Chain of Command

The primary contact for the CVWD during any emergency is the District Engineer. CVWD will contact the District Engineer in the event of any emergency.

From the District Engineer, authority moves up the line to the Regional Engineer, Branch Chiefs, Assistant Division Chief, to finally the Chief of the Division.

The following flow chart shows the chain of command structure within the California Department of Health Services Drinking Water Program (DWP). The CDHS DWP Web site has a map showing all the contact information for each District Office and District Engineer. http://www.dhs.ca.gov/ps/aktuem/technical/dwpp/index.htm. The figure can be modified to show your utility’s command structure, and you can add names and contact numbers from the CDHS DWP Web site.
6.3 Notification Procedures

6.3.1 Initial Notifications

First Responders (911): If the situation is an emergency that needs response from local fire, law enforcement, medical or HAZMAT team, calling 911 should be the first immediate call.

CVWD is aware that if the water system staff calls 911 from a cell phone, then the call is routed to the nearest California Highway Patrol Office, which may be in another city or county, and not in the immediate local 911 area. Direct phone numbers have been obtained from local first responders for the different 911 areas that are served by CVWD. These numbers are shown in the Table C-1 in Appendix C.

6.3.2 Internal Contact List

The contact information in Table C-2 in Appendix C represents the network of CVWD personnel and serves as the primary means of contacting internal staff.

If it becomes necessary to contact the staff member’s family or emergency contact, the PIO will have primary responsibility for making the notification. The Human Resources Manager will assist the PIO with family member communications as needed.

6.3.3 External Contact List

Tables C-3, C-4, C-5, C-6, and C-7 in Appendix C contain contact information for the local and national agencies that CVWD may need to notify. The WUERM will make the decision as to which of these agencies needs to be notified, and at what point in the threat evaluation the calls should be made. The PIO or Liaison Officer will serve as the water utility point of contact for these agencies.

In addition to the External Contact List in Appendix C, CVWD maintains an Emergency Notification Plan (Appendix E) that includes day and evening phone numbers for the CDHS District Engineer and/or staff, CA State OES, and County Personnel. The Notification Plan also includes procedures for notifying the affected service area, and it is updated whenever there is a personnel change.

Note: Each PWS in California can obtain a specific Emergency Notification Plan form from their CDHS District Engineer. It is typically mailed/emailed with the Annual Reports and has current contact information for the CDHS DE, district staff and County Personnel.

6.3.4 Additional Information on State of California Agencies

The initial notification response to any emergency should be to call 911 for the needed first responder and then to the CDHS DWP. The CDHS DWP is the Drinking Water Primacy Agency in California and has regulatory jurisdiction over all public water systems in the state.
Contact to the CDHS DWP should be to their District Engineer. If the water system is unable to contact the District Engineer (or one of their staff), the water system should use the California OES Warning Center Phone Number: 1-800-852-7550, which is a 24/7 phone number. A second phone number for the OES Warning Center is 916-845-8911.

A duty officer will answer the California OES Warning Center phone call and refer to statewide emergency phone numbers. In order to assist the duty officer, it will expedite response if you request the CDHS duty officer. The CDHS duty officer will then call management staff in the DWP to respond to the emergency.

The District Engineer will be able to assist CVWD with:
- Inspections of water treatment plants, storage facilities, and watersheds (chemical contamination, sewage spills, erosion, and drainage diversions).
- Water quality sampling.
- Consulting with water system staff/operators.
- Providing technical assistance.
- Documenting the disaster’s effect on the water system through photographs and reports.
- Review plans and specifications for reconstruction projects, and issue amended permits as needed.
- Laboratory sampling analysis.

6.3.5 Critical Customers Contact List

In addition to the agencies listed in the previous tables in Appendix C, Table C-8 in Appendix C contains contact information for CVWD’s Critical Care Customers (Primary Notification) and Large Water Users (Secondary Notification). The WUERM will decide if the PIO will notify some or all of these customers in the event of an emergency involving the water system.

CVWD’s Water Quality Emergency Notification Plan, as required under Section 116460, California Health and Safety Code, is included in Appendix E of this ERP.

6.3.6 Contact Information for Fire-fighting Water Alternate Sources

If the water becomes contaminated with substances that render it unsafe to be used for fire-fighting, then an order will be issued to discontinue use of the affected fire hydrants. Alternate sources for fire-fighting water are shown in Table C-9 in Appendix C.

6.3.7 Contact Information for Bulk and Bottled Water Suppliers

CVWD has identified agencies and private companies as shown in Table C-10 in Appendix C that could provide water supplies (bottled or bulk) in the event of an incident.

6.4 Public Notice Procedures

6.4.1 Media Notification

Effective communication with the public is a key element of this ERP. CVWD personnel have been instructed to direct all media questions or information requests related to an emergency situation to CVWD’s Public Information Officer, PIO. The PIO is the official spokesperson for CVWD and is the only CVWD employee who is authorized to speak directly to public media representatives.

Table C-11 in Appendix C provides contact information for the various media agencies that CVWD PIO might use to disseminate information to the public.

6.4.2 Public Notification

A Boil Water Order (BWO), Unsafe Water Alert (UWA), or Do Not Drink Notice can be issued by one, or a combination of the following agencies:

- CDHS DWP. Designated personnel: District Engineer, Regional Engineer or Branch Chief.
- Local County Health Department. Designated personnel: County Health Officer or Director of Environmental Health Department for small water systems under county jurisdiction.
- Affected Water System. Designated personnel: responsible person in charge of the affected water system (i.e., Director of Water Quality, Manager, Director of Water Department, Director of Public Works, Owner, etc.).

NOTE: If the water system feels the event/circumstance requires IMMEDIATE issuance of a BWO/UWA and that public health is in serious risk, they may issue a BWO/UWA without first contacting the CDHS District Engineer. If that is the case, the water system must notify CDHS, the County Health Officer and the Environmental County Health Department immediately after issuing a BWO/UWA. Usually a water system will not issue a public notice without the approval (or advisement/guidance from CDHS) as they do not want to take on the sole responsibility for the public notice. In that sense CDHS, will partner with the water system to make the public health decision whether to issue a BWO/UWA or not.

In the event that a BWO, UWA, or Do Not Drink Notice is issued by CVWD, the CM is the person who has the authority to issue the public notice.

If a BWO or UWA is issued, the General Manager will notify the PIO in the EOC immediately.

CVWD will ensure that all public notifications (BWO, UWA, or Do Not Drink Notices) will be coordinated with the CDHS District Engineer, County Environmental Health Department, and the County Public Health Officer prior to issuing a public notice.

CVWD will notify the CDHS District Engineer, the County Environmental Health Department and the County Public Health Officer prior to issuing a
6.0 COMMUNICATION PROCEDURES

CVWD has prepared a series of public notices and press releases for use during various emergency situations in accordance with CDHS guidance. These notices can be found in Appendix D. A summary of each of the notices, including guidance on when to issue each of them, is provided below.

Consumer Alert During Water Outages or Periods of Low Pressure:

- If the water system is experiencing power outages, water outages, or low-pressure problems, a consumer alert may be issued to the public. The notice provides consumers information on conserving water and how to treat the water with household bleach if the water quality is questionable.

BWO:

- A BWO should be issued when minimum bacteriological water quality standards cannot be reasonably assured. To assure public health protection a BWO should be issued as soon as it is concluded by the designated personnel that the water supply is or may be biologically unsafe. Examples of these situations include:
 1. Biological contamination of water supply system, including but not limited to:
 - Positive total or fecal coliform bacteriological samples.
 - Prolonged water outages in areas of ruptured sewer and/or water mains.
 - Failed septic tank systems in close proximity to ruptured water mains.
 - Ruptured water treatment, storage, and/or distribution facilities in areas of known sewage spills.
 2. Unusual system characteristics, including but not limited to:
 - Prolonged loss of pressure.
 - Sudden loss of chlorine residual.
 - Severe discoloration and odor.
 3. Implemented due to treatment deficiencies.

UWA/Do Not Drink:

- In the event a water quality emergency due to known or suspected chemical contamination in the water supply occurs, a UWA or Do Not Drink should be issued. Water should not be used for drinking, cooking, or sanitation purposes. Examples of these situations include:
 1. Known or suspected widespread chemical or hazardous contamination in water supply distribution, including but not limited to:
 - Ruptured water distribution system (storage tanks, mains) in area of known chemical spill coupled with loss of pressure.
 1. Known or suspected widespread chemical or hazardous contamination in water supply distribution, including but not limited to:
 - Ruptured water distribution system (storage tanks, mains) in area of known chemical spill coupled with loss of pressure.

6.5 Cancellation of Public Notification

Once a BWO/UWA is issued, the only agency that can rescind the public notice is the drinking water primacy agency. Specifically, DWP will not lift the BWO until two rounds, collected one day apart, of coliform samples results in negative results.

CDHS DWP will not lift the BWO until two rounds, collected one day apart, of coliform samples results in negative results.

Special chemical sampling will be required to rescind an UWA. CVWD will contact the CDHS DWP District Office to determine the required sampling.

1. Known or suspected widespread chemical or hazardous contamination in water supply distribution, including but not limited to:
2. Suspected contamination triggered by acts of sabotage or vandalism.
3. Emergency use of an unapproved source to provide supplemental water supply.
4. Do Not Use issued when a known or suspected contamination occurs in the drinking water system, and the water supply is biologically unsafe.
5. Examples of these situations include:
 1. Known or suspected widespread chemical or hazardous contamination in water supply distribution, including but not limited to:
 2. Suspected contamination triggered by acts of sabotage or vandalism.
 3. Emergency use of an unapproved source to provide supplemental water supply.
 4. Do Not Use issued when a known or suspected contamination occurs in the drinking water system, and the water supply is biologically unsafe.
 5. Examples of these situations include:

1. Known or suspected widespread chemical or hazardous contamination in water supply distribution, including but not limited to:
2. Suspected contamination triggered by acts of sabotage or vandalism.
3. Emergency use of an unapproved source to provide supplemental water supply.
4. Do Not Use issued when a known or suspected contamination occurs in the drinking water system, and the water supply is biologically unsafe.
5. Examples of these situations include:

1. Known or suspected widespread chemical or hazardous contamination in water supply distribution, including but not limited to:
2. Suspected contamination triggered by acts of sabotage or vandalism.
3. Emergency use of an unapproved source to provide supplemental water supply.
4. Do Not Use issued when a known or suspected contamination occurs in the drinking water system, and the water supply is biologically unsafe.
5. Examples of these situations include:
7.0 Water Quality Sampling

During an emergency, there are several types of water quality sampling that may need to be analyzed depending on the actual event. If it is a natural disaster, flood, or power outage, the sampling will only include bacteriological samples, turbidity, and chlorine residual samples if the system is chlorinated. However, if the event is a terrorist act or contamination event, the sampling will include a full scan of Weapons of Mass Destruction (WMD) chemical, radiological, and microbiological samples (unless the actual contaminant used is known).

7.1 Laboratory Resources

In general, there are four different types of laboratory facilities in California that can analyze water samples, which are listed below:

1. Commercial/private laboratories
2. County Public Health Laboratories
3. State Department of Health Services Laboratories
4. Research Facility/Specialty Laboratories

In general, laboratories are grouped into two broad categories: chemical or biological. Chemical laboratories include general environmental chemistry laboratories, radiological laboratories, and specialty laboratories that may be used to analyze water, air, soil, and other environmental samples. Biological laboratories include environmental microbiology laboratories and the Laboratory Response Network (LRN) that typically analyze clinical samples for pathogens and select biotoxins.

7.2 CDHS Laboratory

The CDHS Sanitation and Radiation Laboratories Branch (SRLB), located within the Division of Drinking Water and Environmental Management, is the State’s primary laboratory for drinking water quality testing. Its primary mission is to provide analytical services, technical support, and standardization. There are two CDHS SRLB laboratories in California: the Southern California Laboratory in Los Angeles and the Northern California Laboratory in Richmond. Each laboratory has facilities to handle and analyze water samples, environmental samples, and biological samples for pathogens and select biotoxins.

7.3 California Mutual Aid Laboratory Network

The CDHS SRLB, in conjunction with the water utilities, USEPA Region 9 laboratory in Redwood City, and Lawrence Livermore National Laboratory has formed a laboratory network, the California Mutual Aid Laboratory Network (CAMAL Net), to address laboratory capacity issues associated with possible drinking-water-related contamination events. CAMAL Net establishes a triage system to process samples from water systems or commercial laboratory methods that are not available or require technical or financial support. The CDHS SRLB will only handle and analyze water samples to identify contaminants not detected by the state or federal laboratories. Any request for analysis through the CAMAL Net system needs to be approved by the CDHS Division of Water Quality Sampling (CDWQ).

7.4 Chemical Analysis Classification

The CDHS SRLB, along with its stakeholders and federal partners, is developing an algorithm to assist California water systems, public health agencies, and first responders in identifying possible chemical agents in drinking-water-related contamination events. A draft version has been developed and anticipated that a final version will be released in the near future. The final version will become an appendix to this ERP.

7.5 Biological Analysis Classification

The LRN for Bioterrorism has ranked laboratories (Level A, B, C, or D) based on the type of safety procedures they practice:

- Level A Labs are used for Class II biosafety laboratories (BSL) cabinet.
- Level B Labs are used for Class II+ BSL safety practices.
- Level C Labs are used for BSL-2+ safety practices.
- Level D Labs are used for the highest level of characterization.

Currently, in California there are 28 Level A labs, 10 Level B labs, and two Level C labs. The two Level C laboratories are the Los Angeles County Public Health Laboratory in Los Angeles, California, and the CDHS MDL in Richmond, California. Lawrence Livermore National Laboratory is also a Level C lab and provides support for other LRN members during a serious outbreak or terrorist event. The most
7.0 WATER QUALITY SAMPLING

7.1 Laboratory

7.2 Sample Collection

7.3 Laboratory

7.4 Sample Transport

7.5 Sample Analysis

7.6 Natural Disaster

7.7 Terrorist Event/Contamination Event

7.8 CVWD Water Sampling and Monitoring Procedures

CVWD will collect samples for public health to determine if the water is safe for consumption using the EWQSK for public health. CVWD will assist the FBI as requested to collect samples for the crime scene investigation.

During a natural disaster, flood, earthquake, fire etc., sample collection and analysis will be available to CVWD by the normal laboratory resources. CVWD will primarily consist of regulatory bacteriological samples and turbidity to show that the system has been flushed out. CVWD may also collect chlorine residual samples throughout the system with a field chlorine test kit.

Once a threat warning has occurred and CVWD has deemed the threat confirmed, it will be necessary to collect water quality samples. The decisions made from the time of the threat warning to the time the threat is confirmed is specific to each individual event. This "credibility stage" may take from 2 to 8 hours and should involve consultation with local first responders, CDHS-SRLB, local Health Department, and the regional Federal Bureau of Investigation (FBI) field office. For more detail on sampling during various stages of threat confirmation, see Appendix A.10.1 and A.10.2.

Assuming the threat is credible enough to warrant water quality sampling, several state and federal agencies are involved to collect samples, transport the samples to appropriate laboratories, and analyze the samples.

CVWD's first step in the process will be to contact the CDHS-SRLB laboratory or the utility sample collection service for chemical, radiological, and microbiological analysis. The CDHS-SRLB laboratory will handle the samples through the appropriate analysis process and report results to the ICS. Sample analysis may take days to weeks to complete depending on the complexity of analysis.

The EWQSK contains sample bottles need for chemical, radiological, and microbiological analysis that can be split into three complete sample sets. A complete list of the EWQSK's contents is provided in Appendix B. The EWQSK should remain sealed and stored as needed throughout the threat.

Several types of samples may need to be collected depending on the event. Sampling will primarily consist of regulatory bacteriological samples and turbidity to show that the system has been flushed out. CVWD may also collect chlorine residual samples throughout the system with a field chlorine test kit.

CVWD will collect samples for public health to determine if the water is safe for consumption using the EWQSK for public health. CVWD will assist the FBI as requested to collect samples for the crime scene investigation.

CVWD will also provide assistance as requested to the responding agencies such as local Health Department and the regional Federal Bureau of Investigation (FBI) field office. For more detail on sampling during various stages of threat confirmation, see Appendix A.10.1 and A.10.2.

Assuming the threat is credible enough to warrant water quality sampling, several state and federal agencies are involved to collect samples, transport the samples to appropriate laboratories, and analyze the samples.

CVWD's first step in the process will be to contact the CDHS-SRLB laboratory or the utility sample collection service for chemical, radiological, and microbiological analysis. The CDHS-SRLB laboratory will handle the samples through the appropriate analysis process and report results to the ICS. Sample analysis may take days to weeks to complete depending on the complexity of analysis.

The EWQSK contains sample bottles need for chemical, radiological, and microbiological analysis that can be split into three complete sample sets. A complete list of the EWQSK's contents is provided in Appendix B. The EWQSK should remain sealed and stored as needed throughout the threat.

Several types of samples may need to be collected depending on the event. Sampling will primarily consist of regulatory bacteriological samples and turbidity to show that the system has been flushed out. CVWD may also collect chlorine residual samples throughout the system with a field chlorine test kit.
Specific information and procedures regarding water sampling and monitoring is included in the following table:

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Sampling/Monitoring Procedures</th>
<th>Quantity of Required Samples</th>
<th>Responsible Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriologic; Coliform</td>
<td>A/P, HPC</td>
<td>At required location swab sample point with bleach and run water for at least 1 minute.</td>
<td>Brian King</td>
</tr>
<tr>
<td>VOC, SOC</td>
<td>Brian King</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiological</td>
<td>Brian King</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The CVWD does not maintain a laboratory but has the following analytical capabilities: Coli-alert tests, Colorimeter based, Chlorine residual and pH. If outside laboratory assistance is needed, CVWD will contact the following laboratory facilities:

<table>
<thead>
<tr>
<th>Outside Laboratory Name</th>
<th>Contact Number</th>
<th>Capabilities</th>
</tr>
</thead>
</table>

8.0 Emergency Response, Recovery, and Termination

8.1 Response Phase

8.1.1 Initial Response

When a situation occurs that is judged to be of an emergency, “out of the ordinary,” or of a suspicious nature, the person who first notices the situation should determine whether an immediate response by police, fire, or emergency medical services is necessary. If so, immediately call 911 to report the incident. Next, report the incident to your supervisor.

General information to be reported from CVWD facilities (or incident sites) includes:

- What has happened?
- What can be done about it?
- What is needed?

An assessment of whether the situation calls for activation of the CVWD’s EOC. Additionally, immediate specific information should include the status of CVWD’s personnel, equipment, vehicles, communications capabilities, and facilities.

The employee who first noticed the incident and the Supervisor that responded should:

1. Notify the WUERM or the Alternate WUERM as soon as possible.
2. Remain in a safe location in the vicinity to meet and assist medical, fire, and police personnel and other first responders as necessary.

8.1.2 Damage Assessment

Damage assessment is used to determine the extent of damage, estimate repair or replacement costs, and identify the resources needed to return the damaged system to full operation. This assessment is accomplished during the emergency response phase of the event, before the recovery phase is implemented.

The WUERM is responsible for establishing a Damage Assessment Team.
The CVWD Damage Assessment Team will be led by the Operations Manager, with representatives from engineering and other appropriate CVWD departments. Team composition will be based on the nature and extent of the emergency and includes:

- Technical advisors to the Operations Manager, who may include external experts such as industrial hygienists or fire protection specialists.
- Utility personnel with the technical expertise to direct post-incident assessment activities and to analyze the results. Maintenance, operations, and engineering staff are expected to fill these positions.
- PIO, who will report to the Operations Manager and coordinate all public information regarding response and recovery operations.

Damage assessment procedures should follow the guidelines established for system operability checks and determination of operability/serviceability. At a minimum, the damage assessment team will:

- Conduct an initial analysis of the extent of damage to the system or facility.
- Estimate the repairs required to restore the system or facility; the estimate should consider supplies, equipment, rental of specialized equipment (e.g., cranes), and additional staffing needs.
- Provide this estimate to the procurement representative for a cost estimate to conduct repairs.
- Document all recovery activities.

The following activities will be required following an incident or emergency event:

- Notify all appropriate regulatory agencies that recovery phase is underway.
- Install warning signs, barriers, and shielding as needed.
- Complete detailed evaluations of all affected water utility facilities and determine priorities for permanent repair, reconstruction, or replacement at existing or new locations.
- Notify all appropriate regulatory agencies that recovery phase is underway.
- Make necessary repairs to the system and un-tag repaired facilities and equipment.
- Address the recovery activities design and schedule repair and replacement.
- Review press releases prior to distribution.
- Release repaired facilities and equipment for normal use.
- Replace or authorize the replacement of materials and supplies used in the emergency.

8.2 Recovery Activities

The Recovery Activities will be directed by the Recovery Manager and will be executed by the CVWD. The Recovery Manager will appoint an additional recovery manager for the recovery team and will ensure that all components of the recovery phase are coordinated and executed in a timely manner.

8.2.1 Recovery Planning

During emergency response operations, the Incident Commander or WUERM will appoint a Recovery Manager. The Recovery Manager is responsible for selecting a recovery team and coordinating all recovery activities. The Recovery Manager will have the authority to coordinate recovery planning and to direct recovery activities. The Recovery Manager will have the authority to direct recovery planning and to ensure that all recovery activities are coordinated and executed in a timely manner.

Additional responsibilities include:

- Provide the transition from emergency to recovery operations.
- Ensure that the appropriate safety inspections have been completed.
- Coordinate the completion of emergency repairs and schedule permanent repairs.
- Notify key agencies of emergency repairs and schedule permanent repairs.
- Review press releases prior to distribution.
- Replace or authorize the replacement of materials and supplies used in the emergency.
- Release repaired facilities and equipment for normal use.
- Control the discharge of any hazardous waste generated during recovery operations.
8.0 EMERGENCY RESPONSE, RECOVERY

- Reevaluate need for maintaining the emergency management organization; consider returning to the normal organizational structure, roles, and responsibilities when feasible.
- Collect cost accounting information gathered during the emergency and prepare request for Emergency Disaster Funds (follow FEMA and State OES requirements).
- Debrief staff to enhance response and recovery efforts in the future by identifying lessons learned, developing action plans and follow-up mechanisms, and providing employee assistance programs if needed.
- Prepare After-Action Reports as required. Complete reports within 6 months of the event (90 days for public utilities which are part of a city or county government).

8.3 Termination and review phase

The Recovery Manager will officially terminate the recovery phase when normal operations are resumed at all facilities affected by the emergency. Termination and review actions include the following:

- Initiate permanent reconstruction of damaged water utility facilities and systems.
- Obtain inspections and/or certifications that may be required before facilities can be returned to service.
- Restore water utility operations and services to full pre-event levels.
- Determine how emergency equipment and consumable materials should be replenished, decontaminated, repaired or replaced.
- Identify operational changes that have occurred as a result of repair, restoration, or incident investigation.
- Document the recovery phase, and compile applicable records for permanent storage.
- Continue to maintain liaison as needed with external agencies.
- Update training programs, the CVWD ERP, and standard operating procedures, as needed, based upon lessons learned during the emergency response and recovery phases of the event.

9.0 Emergency Plan Approval, Update, Training, and Exercises

This section of the ERP describes the plan review and approval process, the practice and update schedule, plan for assessment of the ERP effectiveness and training, exercises, and drills of the ERP.

9.1 Plan Review and Approval

The CVWD process for review and approval of the ERP is described in the sections below.

9.1.1 CVWD Approval Authority

This plan is intended to be a living document that is reviewed regularly and updated as needed to ensure that the information it contains is correct. The ERP will be reviewed and approved by the WUERM, GM, and other approval personnel. The plan will undergo an initial review and approval process and will be reviewed and signed off by the SD after each revision. A revision log is found in the front of the ERP binder.

9.1.2 Local Government Approval

Local Government will review this plan annually for coordination and consistency with the City of Carpinteria’s emergency planning programs.

9.2 Practice and Update Schedule

The schedule for training, updating, and review of the ERP is discussed below.

9.2.1 Schedule and Responsibility for Training and Exercises

A schedule for general security training and incident-specific exercises/drills for testing of the emergency response plan will be developed and reviewed annually. The exercises, drills, and training sessions will be conducted annually or more frequently if the SD deems it necessary. The SD will be responsible for the organization and management of the security-training program.

9.2.2 Schedule for ERP Review and Update

The SD will review and update the ERP and APs as follows:

- Annually prior to the annual ERP/AP training sessions.
- Upon update of the VA.
9.0 EMERGENCY PLAN APPROVAL, UPDATE, TRAINING, AND EXERCISES

9.1 Approval, Update, and Training

Following the ERP exercises.

Within three months of any significant plant modification or water system change.

Immediately when there is a utility staff change where the staff member was named in the ERP.

Immediately when there is a change in the roles and responsibilities of anyone involved in response activities.

Immediately upon changes in internal and external contact information.

9.2 Assessment of ERP Effectiveness

To evaluate the effectiveness of the ERP and to ensure that procedures and practices developed under the ERP are adequate and being implemented properly, the CVWD staff will perform audits of the program on a periodic basis.

One method of audit will be through exercises and drills. Members of CVWD management will act as observers during the exercises and will evaluate the staff's performance in responding to emergency incidents as well as the overall effectiveness of the ERP in the chain of command, and the ERP and APs will be updated as appropriate to incorporate any lessons learned from the exercises.

The CVWD management staff will also be discussed as an agenda item during the GM's meeting each time the VA is updated. At this time, CVWD management and staff will discuss the need to update or assign the ERP based on new information regarding trends or critical asset vulnerability.

The CVWSD will maintain a file of ERP assessment and after-action reports.

9.4 Training, Exercises, and Drills

All CVWD personnel who may be required to respond to emergencies will receive initial and refresher training class on this ERP. The training will consist of the following programs:

Orientation Sessions: The orientation sessions will include basic instruction and explanation of the ERP and AP procedures. Written tests may be used to ensure that the employees understand the procedures and materials are introduced.

Functional Exercises: The functional exercises are designed to simulate a real major event. A team of simulators is trained to develop a realistic situation. By using a series of pre-scripted messages, the simulation team sends information to personnel assigned to carry out the ERP. The evaluation is focused on carrying out the procedures to test the validity of the ERP.

Full-scale Drills: Emergency response personnel and equipment are actually mobilized and moved to a scene. A problem is presented to the response personnel, and they respond as directed by the ERP and the Incident Commander or WUEM at the scene.

9.3 Assessment of ERP Effectiveness

Employees will be presented with a fabricated major event. Next, they will verbally respond to a series of questions and then evaluate whether their responses match what is written in the ERP.

Functional Exercises: The functional exercises are designed to simulate a real major event. A team of simulators is trained to develop a realistic situation. By using a series of pre-scripted messages, the simulation team sends information to personnel assigned to carry out the ERP. The evaluation is focused on carrying out the procedures to test the validity of the ERP.

Table Top Workshop: Table top workshops involve developing scenarios that describe potential problems and providing certain information necessary to address the problems.
10.0 References and Links

The following is a list of references and Internet links that provide additional water system security and ERP information.

California Department of Health Services Drinking Water Program (CDHS DWP): CDHS DWP is the Drinking Water Primacy Agency for all California public water systems serving over 20 service connections. CDHS has published a guidance document to assist California public water systems in developing or revising their emergency response plans. General information, as well as the guidance document and its appendices, is available at http://www.dhs.ca.gov/ps/ddwem/homeland/default.htm.

Department of Homeland Security (DHS): DHS is the overall lead agency for homeland security issues. DHS will become involved in incident response if needed. General information is available at http://www.dhs.gov/dhspublic.

United States Environmental Protection Agency (USEPA): USEPA has numerous resources available. The following are key sources:
- Water Infrastructure Security information, guidance, and training information can be found at http://www.epa.gov/safewater/security/index.html.
- Information on Local Emergency Planning Committees (LEPCs) can be found at http://www.epa.gov/ceppo/lepclist.htm.

The Center for Disease Control and Prevention (CDC): The CDC develops resources to assist hospital staff, clinics, and physicians in diagnosing diseases related to terrorism, reporting incidences of disease, and controlling the spread of infection. Information on emergency preparedness and response can be found at http://www.bt.cdc.gov/.
- Interim Recommended Notification Procedures for Local and State Public Health Department Leaders in the Event of a Bioterrorist Incident can be found at http://www.bt.cdc.gov/EmContact/Protocols.asp.

The American Water Works Association (AWWA): USEPA training developed through partnership with AWWA covers the entire spectrum of security issues including assessing vulnerabilities, emergency response plans, and risk communication. AWWA information sources can be accessed at http://www.awwa.org. Specific AWWA resources can be found at http://www.awwa.org/communications/offer/secureresources.cfm.

The Association of State Drinking Water Administrators (ASDWA): ASDWA has information on water security planning, training, and links to state programs and other information sources. Go to the ASDWA security link at http://www.asdwa.org.

Agency for Toxic Substances and Disease Registry (ATSDR): ATSDR is directed by congressional mandate to perform specific functions concerning the effect on public health of hazardous substances. The following are key sources:
- Health education, applied research in support of public health assessments of waste sites, health consultations concerning specific hazardous substances, health surveillance and registries, response to emergency releases of hazardous substances, and more information can be found at http://www.atsdr.cdc.gov/.
AP 1A - Threat of or Actual Contamination to Water System

POSSIBLE STAGE

AP Summary:
This Action Plan applies to the intentional introduction of a contaminant into the water system. The contaminant could be introduced at any point within the system, including raw water, treatment facilities, distribution system including distribution pipes, finished water storage, or pump stations. The adversary may or may not give notice of the contaminant or provide the location. Contamination may have actually occurred or it may be a hoax.

<table>
<thead>
<tr>
<th>Initiation and Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this AP if you receive any incident warning (see types of warnings to left) indicating possible contamination of your water system.</td>
</tr>
</tbody>
</table>

If you have evidence that corroborates the warning, or if collective information indicates contamination is likely, **GO TO AP 1B – CREDIBLE STAGE.**

If there is confirmed evidence and/or definitive information that the water system has been contaminated, **GO TO AP 1C – CONFIRMED STAGE.**
APPENDIX A - ACTION PLANS

AP 1A - Threat of or Actual Contamination to Water System

POSSIBLE STAGE

Initiation and Notification:
The individual who first notices or receives the threat warning should contact the [WUERM] immediately by whatever means of communication may be available.

Equipment Identified:
This equipment is available to assist in the execution of this AP.

Specific Activities:

I. Assess the Problem
Threat Warning Report Forms help document, organize, and summarize information about the threat.

II. Isolate and Fix the Problem

III. Monitoring
Site Characterization is intended to gather critical information to support the 'credible' stage of threat.

APPENDIX A - ACTION PLANS

AP 1A - Threat of or Actual Contamination to Water System

POSSIBLE STAGE

security incident. The individual who discovers the incident warning, the [WUERM], or another designated individual may complete the form. Only the form that corresponds to the type of threat warning needs to be completed. Completion of the form should not distract emergency responders from more urgent matters.

Threat Evaluation Worksheets help organize information about a threat warning that will be used during the Threat Evaluation Process. The individual responsible for conducting the Threat Evaluation (e.g., the [WUERM]) should complete this worksheet.

Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

The immediate operational response actions are primarily intended to limit exposure of customers to potentially contaminated water.

See EPA Toolbox Module 2, Section 3.3.2 for guidance on containing contaminants and evaluating movement of potentially contaminated water through distribution systems.
AP 1A - Threat of or Actual Contamination to Water System

POSSIBLE STAGE

<table>
<thead>
<tr>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>If signs of a hazard are evident during the site approach, the team should halt their approach and immediately inform the [WUERM] of their findings. The site may then be turned over to the HAZMAT Team.</td>
</tr>
</tbody>
</table>

The [WUERM] may determine the threat is credible based prior information before the site characterization has been completed.

IV. Recovery and Return to Safety

You should determine whether or not the threat is “credible” within 2 to 8 hours (preferably within 2 hours) from the time the threat is deemed “possible”, depending on the effectiveness of the containment strategy.

If the threat is not deemed “credible”, the samples obtained during site characterization should be stored in case the situation changes and analysis is determined to be necessary.

V. Report of Findings

The Utility [Security Director] should file an internal report for the Utility’s files, and also provide information as requested to Local Law Enforcement.

VI. AP-1A Revision Dates

AP 1B - Threat of or Actual Contamination to Water System

CREDIBLE STAGE

AP Summary:

This Action Plan applies to the intentional introduction of a contaminant into the water system. The contaminant could be introduced at any point within the system, including raw water, treatment facilities, distribution system including pipelines, finished water storage, or pump stations. The adversary may or may not give notice, identify the contaminant, or provide the location.

Contamination may have actually occurred or it may be a hoax.

Initiation and Notification:

A. Initiate this AP if there is credible evidence that the water system has been contaminated:

- Additional information collected during the investigation corroborates the threat warning.
- Collective information indicates that contamination is likely.
- Signs of contamination are observed during site characterization.
- Additional water quality data shows unusual trends that are consistent with the initial data and corroborate the threat.
- A pattern of customer complaints emerges.
- Previous threats and incidents corroborate the current threat.

B. Notify [WUERM] or [Alternate WUERM] immediately upon discovery of credible evidence of threat (if not already notified).

C. Initiate ERP.

D. Initiate partial or full activation of the Emergency Operations Center (EOC).

Perform internal and external notifications according to ERP.

If there is confirmed evidence and/or definitive information that the water system has been contaminated, GO TO AP 1C – CONFIRMED STAGE.

The individual who first notices or receives the credible evidence should contact the [WUERM] immediately by whatever means of communication may be available.

The [WUERM] will decide whether to initiate the ERP on a partial or full basis. The [WUERM] will also decide when and to what extent to activate the EOC.

Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

The [Information Officer], [IO] is the only one authorized to make notifications to outside agencies.
APPENDIX A - ACTION PLANS

Equipment Identified:
- Portable Chlorine analyzers
- pH Meter
- Turbity Meter
- Emergency sample kit

Location: Engineering Office (see Brian King)

This equipment is available to assist in the execution of this AP.

Specific Activities:

I. Assess the Problem
 1. Assess results of previous sample analysis.
 2. Perform additional site characterization at primary sites as needed.
 3. Perform site characterization at any new investigation sites.

II. Isolate and Fix the Problem
 4. Perform actions to estimate the contaminated area and predict movement of contamination.
 5. Take actions to isolate portions of system containing suspect water.
 See ERP Appendix B for System Shut Down Plan.
 6. Issue "Boil Water", "Do not Drink", or "Do not Use" orders and Press Releases as appropriate. See Appendix F of ERP for Press Release Forms.
 7. Initiate Alternate Water Supply Plan (ERP Section XX) to provide alternate water supply for customers and fire protection as necessary.

III. Monitoring
 8. Continue to monitor water quality in suspect parts of system by manual sampling, rapid field testing, or automated means.

IV. Recovery and Return to Safety
 9. Determine if threat is Confirmed.
 If YES, Initiate AP 1C.
 If NO, Verify that water is safe.
 Notify public that water is safe.
 Notify outside agencies that water is safe.
 Return to normal operations.
 Store water samples for two weeks.

It may take several days to collect sufficient evidence to confirm a contamination incident, depending on the type of information used for confirmation. (Some microbiological analytical procedures may take several days.) If the threat is not deemed 'confirmed', the samples obtained during site characterization should be stored in case the situation changes and an analysis is determined to be necessary.

V. Report of Findings
 E. File incident reports.

The Utility [Security Director] should file an internal report for the Utility's files, and also provide information as requested to Local Law Enforcement and other outside agencies.

VI. AP-1B Revision Dates
AP 1C - Contamination to Water System
CONFIRMED STAGE

AP Summary:

Initiation and Notification:

Equipment Identified:

AP 1C - Contamination to Water System
CONFIRMED STAGE

Initiation and Notification:

Equipment Identified:

Initiation and Notification:

Equipment Identified:
Specific Activities:

I. Assess the Problem

1. **Assess results of previous sample analysis and attempt to identify the contaminant.**
2. **Confirm the identity of the contaminant.**

 Effective implementation of response actions depends on positive identification of the contaminant and knowledge of contaminant properties, including public health protection strategies and selection of treatment technologies.

3. **Perform a full characterization of the contaminated area, including contaminant properties, contaminant concentration profiles, and characteristics of the impacted area.**
4. **Evaluate the likely direction and extent of future movement of the contaminant within the distribution system.**

If information from site characterization activities indicates that the contaminant impacts water quality in a certain manner (i.e., consumes free chlorine or imparts a certain odor to the water), the contaminant specific information may facilitate tentative identification of a contaminant and determine the analytical approach that should be used to positively identify the specific contaminant. Sources of contaminant information include:

- [EPA Water Contaminant Information Tool (WCIT) – under development](http://www.epa.gov/watercontaminanttools/)

II. Isolate and Fix the Problem

6. **Take actions to isolate portions of system containing suspect water.** See ERP Appendix B for System Shut Down Plan.

7. **Shut down system if obvious or confirmed contamination warrants.**

8. **Issue “Boil Water”, “Do not Drink”, or “Do not Use” orders and Press Releases as appropriate.** See Appendix D of ERP for Press Release Forms.

9. **Initiate Alternate Water Supply Plan (ERP Section XX) to provide alternate water supply for customers and fire protection as necessary.**

10. **Revise public health response measures and public notifications as necessary.**

III. Monitoring

11. **Continue sampling and analysis to monitor the status and extent of the contamination, and to verify that containment strategies are working.**

IV. Recovery and Return to Safety

12. **Consult with appropriate officials to develop a Remediation and Recovery Plan.**

 - **Evaluate options for treating contaminated water and rehabilitating system components.**
 - **Select treatment and rehabilitation technology/approach.**
 - **Develop strategy for disposal of contaminated residuals.**
 - **Develop sampling and analysis plan to verify remediation.**
 - **Develop communications and public relations plan.**

13. **Implement Remediation and Recovery Plan.**

 - **Verify that water is safe by performing additional sampling and analysis to confirm the progress of system treatment and remediation.**
 - **Notify public that water is safe.**
 - **Notify outside agencies that water is safe.**
 - **Return to normal operations.**
 - **Store water samples for two weeks.**

Remediation and recovery activities will likely be planned and implemented by a number of agencies. The first step of the process is to establish the roles and responsibilities of each organization.

The samples obtained during site characterization and monitoring should be stored in case the situation changes and further analysis is determined to be necessary.
AP 1C - Contamination to Water System

CONFIRMED STAGE

V. Report of Findings

[Security Director]

VI. AP-1C Revision Dates

AP 2 - Structural Damage from Explosive Device

AP Summary:

This Action Plan applies to an incident where intentional structural damage has occurred to the water system as a result of an explosive device. The assumed intent of the explosion is to disrupt normal system operations at any point within the system, including raw water, treatment, finished water storage, or the distribution network.

Initiation and Notification:

A. Initiate this AP if it appears that an explosive device has caused damage, or has the potential to cause damage to one or more components of the water system. The event will begin with an "incident discovery" which may come to CVWD by one (or more) of the following:

1. Security Equipment
2. Employee Discovery
3. Witness Account of Explosion
4. Notification by Adversary
5. Notification by Fire Department
6. Notification by Law Enforcement
7. Notification by News Media

B. Call 911 and notify [WUERM] or [Alternate WUERM] immediately upon discovery of the explosion. The [WUERM] should then notify others as appropriate. Examples include:

a. Local Fire Department
b. Local Police Department
c. FBI
d. ATF

C. Take all practical measures to ensure that the building or facility is evacuated.

The individual who first notices or receives word of the explosion should contact the [WUERM] immediately by whatever means of communication are available. Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

Initiation and Notification:

D. In cases where an adversary calls a CVWD employee in advance that employee should complete the Bomb Threat Checklist OR Phone Threat Report Form found in Appendix F of the ERP.

E. Initiate partial or full ERP activation.

F. Initiate partial or full activation of the Emergency Operations Center (EOC).
AP 2 - Structural Damage from Explosive Device

Equipment Identified:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>District Offices</td>
</tr>
<tr>
<td>Radio</td>
<td>District Trucks</td>
</tr>
<tr>
<td>Tools</td>
<td>Maintenance Building</td>
</tr>
</tbody>
</table>

This equipment is available to assist in the execution of this AP.

Specific Activities:

1. **Assess the Problem**
 1. Deploy Damage Assessment Team(s) (DAT)
 2. Check and monitor all other water system functions and facilities to ensure that the rest of the system is operating normally. (The initial explosion could be a diversion to a larger event, or it could be the first in a series of similar attacks.)
 3. If the damage appears to be intentional, treat as a crime scene. Consult with local police, state police, and the FBI on evidence preservation. Also see Maintaining Crime Scene Integrity Form, Appendix F of ERP.
 4. Isolate damaged facility from rest of water system, and take measures to bypass the damaged area if possible.

The DAT will work in conjunction with local/state law enforcement in terms of incident command and control. UNDER NO CIRCUMSTANCES WILL THE DAT TEAM ENTER THE AREA CONTAINING THE EXPLOSIVE DEVICE UNTIL AFTER THE LOCAL LAW ENFORCEMENT EXPLOSION SPECIALISTS (BOMB SQUAD) HAS DETERMINED THAT THE AREA IS SAFE.

5. Inform local police, state police, and the FBI of potential hazardous materials.

6. Physically secure water system facilities and implement heightened security procedures throughout the system.

7. Initiate Alternate Water Supply Plan (ERP Section XX) to provide alternate water supply for customers and fire protection as necessary.

8. Based on extent of damage, consider alternate (interim) treatment schemes.

10. Request assistance from outside contractors or other water utilities if needed to help repair the damage.

III. Monitoring

11. Perform sampling and monitoring activities and analysis to determine if the explosion has rendered the water supply unsafe for customers.

12. Perform a system pressure evaluation to determine how the explosion has affected customers and fire water capability in each pressure zone.

IV. Recovery and Return to Safety

13. Repair damage to critical equipment and facilities as soon as possible.

14. Determine and mitigate effects on other system components. For example, replace water storage capacity if it was diminished during repairs.

15. Clean and disinfect system components as necessary.

16. Resume normal operations.

17. Assess need for additional protection/security measures.

The [WUERM] will inspect the repairs and will give the OK to resume normal operation of the water system. The [WUERM] will evaluate a heightened security posture. As a result, security will be increased or decreased as necessary according to the perceived threat.
AP 2 - Structural Damage from Explosive Device

<table>
<thead>
<tr>
<th>V. Report of Findings</th>
<th>Security Director</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>VI. AP-2 Revision Dates</th>
</tr>
</thead>
</table>

AP 3 - Employee Assaulted with Weapon (Armed Intruder)

AP Summary:

This Action Plan applies to the threat of an employee(s) being assaulted by an intruder (possibly an ex-employee), with a weapon. Incidents of this type will vary in scale and severity, but the following should generally apply across the spectrum of threat conditions.

If you believe this threat is of current importance and have not yet dialed 911 or an emergency equivalent, do so immediately before proceeding.

Initiation and Notification:

Initial notification of the incident will vary in both method and urgency, however in any scenario the first priority is the welfare of the assault victim. Under all circumstances, emergency personnel should be notified and consulted immediately.

This threat requires a response addressing three distinct categories:

- Ensuring the health and safety of the victim and other employees.
- Notifying and facilitating involvement of the proper authorities.
- Communicating specifics of the incident to other staff, the media, and the victim’s relatives.

Remain aware of these aspects of your response as the AP is initiated and consulted.

The individual who first notices or receives word of the assault should contact 911 immediately by whatever means of communication may be available. Notification phone numbers can be obtained from the Organization Contact List in the Appendices of the ERP.

Equipment Identified:

- Phones and Radio
- First Aid Kit

This equipment is available to assist in the execution of this AP.
AP 3 – Employee Assaulted with Weapon (Armed Intruder)

Specific Activities:

<table>
<thead>
<tr>
<th>I. Assess the Problem</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The first task upon discovery of the incident is to dial 911 and report the incident in detail.</td>
<td></td>
</tr>
<tr>
<td>2. An ambulance (or other transportation to the hospital in less urgent situations) should be immediately arranged in all cases.</td>
<td></td>
</tr>
<tr>
<td>3. Decision-making control of the situation should be readily surrendered to the proper authorities.</td>
<td></td>
</tr>
<tr>
<td>4. In the event of a hostage situation or extended incident, Utility staff should notify the authorities and evacuate the area quickly.</td>
<td></td>
</tr>
<tr>
<td>5. Under no circumstances should Utility personnel attempt to subdue the adversary or bring personal weapons onto the scene.</td>
<td></td>
</tr>
</tbody>
</table>

II. Isolate and Fix the Problem

6. If witnesses were present they should be readily available to provide information to the authorities.	
7. The area surrounding the incident is a crime scene and care should be taken not to alter anything that may impair the ability of the authorities to interpret or recreate the assault. Consult the Maintaining Crime Scene Integrity Form located in Appendix F of this ERP.	
8. The weapon, if present, should not be handled or touched in any way.	

III. Monitoring

| 9. Communication with the media should be handled in a proactive fashion, with statements made only by the identified Utility spokesperson. Similarly, employees should not be left to spread the word through gossip and hearsay. An announcement carrying relevant details should be disseminated promptly. | |
| 10. If the assault victim is injured or otherwise unable to perform his/her duties, the replacement personnel may also be under significant stress. Care should be taken in selecting replacement personnel including monitoring of performance. | |

IV. Recovery and Return to Safety

11. Staff stress may have serious ramifications. It is important to evaluate these effects in an ongoing fashion and address them accordingly. The Utility should consider temporary mental health counselors under such tragic circumstances.	
12. In the event of a fatality, notification of family is an unfortunate duty, which may be best handled by the local police or other authorities experienced in such tasks.	
13. If security was breached during the incident, rapidly address any weakness the incident may have identified. Evaluate access to the incident location and modify where necessary.	
14. If the adversary was acting with an identifiable motive, consider the mentality and culture of the utility to evaluate if the underlying issue may be significant and widespread.	
15. If assault was of a sexual nature consider awareness training for utility staff.	
16. The need to maintain a heightened security posture should be evaluated, and security should be increased and decreased as necessary according to the perceived threat.	

V. Report of Findings

| 17. In addition to completing the appropriate filings with the local police and other agencies, the utility should assemble relevant personnel to review the effectiveness of the action plan and reinforce lessons learned in the process. | |

VI. AP-3 Revision
<table>
<thead>
<tr>
<th>AP 3 – Employee Assaulted with Weapon (Armed Intruder)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dates</th>
</tr>
</thead>
</table>

AP Summary:

This Action Plan applies to a cyber attack on a SCADA network system when the cyber intruder is:

- Conducting DoS (Denial of Service)
- Initiating SCADA/DCS command spoofing
- Attempting to take the SCADA/DCS system down
- Attempting to take control of or is in control of the system

Prepare for problems by:

- Updating all network documentation around the SCADA/DCS
- Documenting all network data flows to/from Intranet systems, SCADA/DCS and surrounding systems
- Identifying Zones of Vulnerability
- Identifying ramifications and feasibility of disconnecting networks, computers and data flows
- Ensuring that sufficient monitoring and network control points (firewalls, IPS, etc.) are in place to both know what's happening on your network and how to control it
- Characterizing network traffic so that anomalous behavior can be identified
- Becoming familiar with computer forensics tools and practices before being forced to learn them "under fire"
- Becoming familiar with host-based monitoring and intrusion detection, since most hacking over networks is now conducted via encrypted tunnels or data streams.
- Ensuring that backup/restore procedures are up to date, as are the backups themselves

Initiation and Notification:

Notify immediately upon discovery of the attack:

- [WUERM], Data (IT) Manager
- Others as appropriate (for example):
 - Internet Service Provider
 - Computer Equipment Vendor
 - Computer Emergency Response Team

The individual that first notices or receives word of an attack should contact the Data (IT) manager and [WUERM] immediately by whatever means of communication may be available. Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

Equipment Identified:

- Laptop
- Backup programming.

This equipment is available to assist in the execution of this AP.
AP4 – SCADA Security

<table>
<thead>
<tr>
<th>Specific Activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Assess the Problem</td>
</tr>
<tr>
<td>II. Isolate and Fix the Problem</td>
</tr>
<tr>
<td>III. Monitoring</td>
</tr>
<tr>
<td>IV. Recovery and Return to Safety</td>
</tr>
</tbody>
</table>

Specific Activities:

1. **I. Assess the Problem**
 - SCADA is not controlling plant parameters
 - Complaints from customers
 - Quality of water results
 - Inadequate throughput
 - In a DoS an intruder breaks into a number of computers and plants programs that lie dormant until activated by the attacker. The computers then send a steady stream of data packets to a targeted Web site in an attempt to crash a service (or server), overload network links, or disrupt other mission-critical resources. DoS attacks are powerful because they can be launched simultaneously from hundreds of remotely controlled computers, thereby amplifying their reach. The objective of a DoS attack is to exhaust the resources of the target until the underlying network fails. The tools for DoS attacks are widely available and can be found at numerous hacker Web sites.

2. **II. Isolate and Fix the Problem**
 - 1. Restrict physical access to the area.
 - 2. Physically unplug any phone lines that could dial in to the attacked computer.
 - 3. Unplug the computer from the network.
 - 4. Determine if the SCADA system needs to be isolated from process operations and taken completely off line.
 - 5. Photograph the scene, including connections to any peripherals.
 - 6. IF the computer is off, DO NOT turn it on (preferred method is to jumper system disk drive(s) as read only, and perform a post-mortem on a separate computer using suitable tools.)
 - 7. IF the computer is on, DO NOT reboot it.
 - 8. Avoid accessing any files on the compromised machine.
 - 9. Increase sampling at or near system intakes – consider whether to isolate.
 - 10. Preserve latest full battery background test at baseline.
 - 11. Increase sampling efforts.
 - 12. Check for US-CERT water sector warnings (US_CERT may contain additional protective actions to consider: http://www.NIPC.gov)

3. **III. Monitoring**
 - 13. Monitor unmanned components (storage tanks & pumping stations) – consider whether to isolate.

4. **IV. Recovery and Return to Safety**
 - 14. Solicit the assistance of a Computer Emergency Response Team or Network Forensics Specialists. OR with appropriate training, develop site-specific procedures to:
 - 15. Retrieve logged data from the various equipment and server logs.
 - 16. Collect adequate information (make image copies).
 - 17. With law enforcement/FBI assistance, check for implanted backdoors and other malicious code (i.e., Trojan horse, or worm).
 - 18. Install safeguards and patch to current levels.

Computer Emergency Response Teams:

Preserve the evidence, Determine the extent of damage, Return the system to normal operation. The goal is for proper forensics to be performed on these logs such that it cannot be claimed that these logs were tampered or altered and prosecution can therefore take place. The goal is to preserve evidence for identifying and prosecuting the attacker utilizing assistance from the proper authorities in command (FBI, EPA, Police, Computer Emergency Response Team, etc.).

IV. Recovery and Return to Safety

19. Test security breach to ensure plugged (in a safe mode, in case Prematurely returning the system to operation may make the utility susceptible to specific attack via purposefully implanted attack...
AP4 – SCADA Security

20. Assess / implement additional precautions for SCADA system. Simply returning the system to operation may be insufficient and invite future attacks. Ensures attacker can not use same method to compromise SCADA system. Simply restoring from recent backup media may be insufficient to restore the system to a trusted state.

V. Report of Findings

21. Turn over evidence to the proper authorities. Supports prosecution of attack.

VI. AP-4 Revision Dates

AP5 – IT Security

AP Summary:

This Action Plan applies to a cyber attack on an IT intranet system. Examples of cyber include:

- Virus
- Denial of Service (DoS) including Smurf, ICMP, TCP SYN, UDP, TCP, Distributed Denial of Service, and various combinations
- Internet facing server attacks
- Unauthorized Network Intrusions / Unauthorized Access

Prepare for problems by:

- Updating all network documentation around the Intranet, mail/file server and SCADA server
- Documenting all network data flows to/from Intranet systems, SCADA/DCS and surrounding systems
- Identifying Zones of Vulnerability
- Identifying ramifications and feasibility of disconnecting networks, computers and data flows
- Ensuring that sufficient monitoring and network control points (firewalls, IPS, etc.) are in place to both know what’s happening on your network and how to control it
- Characterizing network traffic so that anomalous behavior can be identified
- Becoming familiar with computer forensics tools and practices before being forced to learn them “under fire”
- Becoming familiar with host-based monitoring and intrusion detection, since most hacking over networks is now conducted via encrypted tunnels or data streams
- Ensuring that backup/restore procedures are up to date, as are the backups themselves

Initiation and Notification:

Initiate this AP if any of the following has occurred:

- More than one user reports unusual behavior
- Unusual log file entries - Although expert intruders are good at covering their tracks, examples include numerous failed login attempts, and logins into dormant or default
7. Determine if the system should be an intruder to access your network.

6. Alert others according to the response strategy including contacting a Computer Emergency Response Team.

5. Save the system state by backing up as much of the system as necessary.

4. Take a snapshot of the system – Obtain a forensic image of the system.

3. Document the event (See items 4 and 16).

2. Isolate and Contain the Threat (Insert site- specific procedures consistent with your network architecture).

1. Protect Customer Information (Take the appropriate action).

- Equipment Identified:
 - CD-ROMs
 - Hard disks
 - Modems
 - Network state
 - Memory (kernel and physical)
 - Disks and backup media
 - Hardware data residue, memory chips, and PDA-type systems
 - Network state
 - Medias and PDA-type systems

- Specific Activities:
 - APC – IT Security
 - APC – IT Secur
AP5 – IT Security

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Report of Findings</td>
<td></td>
</tr>
<tr>
<td>18. Turn over evidence to the proper authorities.</td>
<td>Supports prosecution of attack.</td>
</tr>
</tbody>
</table>

VI. AP-5 Revision Dates

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Monitoring

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Perform real-time scanning and detection to prevent further infection</td>
<td>10. Set up traps. This involves actively tracking traffic for unusual activity (for example, port scanning) or patterns of an attack. Attackers sometimes use a “smoke screen”, an attack that attempts to divert attention from a more stealthy network intrusion. It is therefore important not to focus all attention on an initial attack, but to continue diligently looking for other attacks. This action involves learning the intruder’s identity or modus operandi (MO). The MO is a mechanism by which the perpetrator commits his or her crime. It is a learned behavior and can change over time. A MO can be considered a pattern, allowing for some variance. Examples of traps are honeypots (that is, computers designed to attract attackers in order to record their behavior and to gather evidence, but not meant for legitimate users.)</td>
</tr>
</tbody>
</table>

IV. Recovery and Return to Safety

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Remove any hidden malicious programs or directories added by the intruder or deployed by the malicious code, up to and including a system-wide removal of all programs and files (i.e., format the disk and re-install).</td>
<td>14. Update virus signatures.</td>
</tr>
<tr>
<td>15. Eliminate the vulnerability that allowed the exploit and ensure the system is restored with an optimal security configuration.</td>
<td>16. Complete a break-in report.</td>
</tr>
<tr>
<td>17. Based on experience, identify and document tools and techniques that would improve future incident responses.</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX A - ACTION PLANS

CVWD ERP 07/27/2007 A-28

AP5 – IT Security

APPENDIX A - ACTION PLANS

AP 7 – Power Outage

Summary:
This Action Plan applies to events that result in power outages. Note that this Action Plan may need to be implemented in conjunction with other Action Plans (for example, severe weather) as necessary.

Consider agreement with the power company to determine the priority of drinking water and wastewater systems for recovery prior to the emergency.

Initiation and Notification:
Initiate this AP upon a loss of offsite power
Notify:
/WUERM/ [WUERM]
[Alternate WUERM]
Others as appropriate, examples include:
/Fuel supplier (back up generator)/
/Critical Care Customers/
/Large Water Users/

Notify the [WUERM] by whatever means of communication may be available.
Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

Equipment Identified:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile battery-powered radios</td>
<td></td>
</tr>
<tr>
<td>Mobile/cellular phones</td>
<td></td>
</tr>
<tr>
<td>Flashlights</td>
<td></td>
</tr>
<tr>
<td>Spare batteries</td>
<td></td>
</tr>
<tr>
<td>Accessory requirements (cables for generators, transformers, load banks, bus bars, distribution panels, feeder panels, fuses, outlets, load centers, etc)</td>
<td></td>
</tr>
<tr>
<td>Emergency kits</td>
<td></td>
</tr>
</tbody>
</table>

Specific Activities:

I. Assess the Problem
1. Call local hydro-electric supply company – request information on the estimated down time.
2. IF backup generation is available, THEN assess the ability to supply fuel for extended periods.
3. Assess ability for HVAC or alternate to provide proper temperatures for SCADA, computer, and control systems.
4. Estimate potable water requirements under the emergency condition and determine if the utility can still meet requirements.
5. IF telephone is also down, THEN SCADA communications may be blocked.
6. Loss of power could affect utility access gates, CCTV, intrusion alarms and other remote monitoring abilities. Loss of power may be a diversionary tactic for other terrorist activity. Be alert.

Consider agreements with fuel supply company to supply fuel automatically upon a power loss if the capability to store fuel on site is not practical. A fuel tank with capacity for at least 24 hours of run time is advisable.

If on-staff personnel are not experienced with power-generation equipment, it is necessary to arrange for professional assistance to install and operate the mobile units.

Evaluate back-up power with controllers that sense problems with purchased power and come up automatically.

Complete assessment as quickly as possible.

II. Isolate and Fix the Problem
7. Turn off unnecessary electrical equipment.
8. Start back up generators as necessary for key components: Note: Uninterruptible Power Supply (UPS) for SCADA and computers, battery back-up for Remote...
<table>
<thead>
<tr>
<th>H. Isolate and Fix the Problem</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Increase disinfectant residual as a precaution to potential contamination.</td>
<td></td>
</tr>
<tr>
<td>10. If not able to meet community requirements for water then arrange for water to be supplied by another source. See Mutual aid agreements Section II B. of ERP and Section III.G of ERP for Alternate Water Sources.</td>
<td></td>
</tr>
<tr>
<td>11. Notify priority customers</td>
<td></td>
</tr>
<tr>
<td>12. Notify users of interruption of service if backup pump(s) is/are not capable of maintaining supply.</td>
<td></td>
</tr>
<tr>
<td>14. Initiate back up plan for retrieval of current information from outside sources.</td>
<td></td>
</tr>
<tr>
<td>A. Temporary portable generator should not be connected to building wiring unless the building meets the same technical standards legally required for a permanent generator. Most buildings are not so equipped. As an alternative, use properly rated extension cords to connect electrical loads directly to the generator receptacles.</td>
<td></td>
</tr>
<tr>
<td>This is an analysis of all available sources of water, not just those used under conditions of normal operation. These sources might include both new intakes or wells, public or private ponds, reservoirs, swimming pools, interconnections with other water utilities, water stored within building water systems, water provided in bottles or tank trucks from outside sources of potable water, local dairies or bottling plants, etc.</td>
<td></td>
</tr>
<tr>
<td>Since computers may be down, access to Water ISAC, police, government, etc. could be compromised.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Monitoring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. If damage to equipment occurs, then contact vendor/mutual aid companies to replace/repair damaged equipment.</td>
<td></td>
</tr>
<tr>
<td>18. Monitor the status of the backup power supply and regularly test whether battery levels are adequate and the backup generators are functional.</td>
<td></td>
</tr>
<tr>
<td>Ask your vendors about specific limitations of your equipment. Find out how long it would take to repair or replace damaged equipment.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. Recovery and Return to Safety</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Conduct disinfection, flushing, and bacteriological sampling after repairs of equipment lost.</td>
<td></td>
</tr>
<tr>
<td>20. If power outage occurs during freezing conditions then allow electronic equipment to reach ambient temperatures before energizing to prevent condensate from forming on circuitry.</td>
<td></td>
</tr>
<tr>
<td>21. Fire and potable water piping should be checked for leaks from freeze damage after the heat has been restored to the facility and water turned back on.</td>
<td></td>
</tr>
<tr>
<td>22. Notify public/customers when it is safe to use the drinking water again.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. Report of Findings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23. All the components of the incident should be correlated and established in writing. This would include how the response was managed and suggestions to improve the facility/community response in the future. The report should incorporate all relevant data from the incident and suggested changes in the emergency response plans and procedures.</td>
<td></td>
</tr>
<tr>
<td>24. Suggestions from the report should be submitted to the governing board/individuals for evaluation and actions to be taken.</td>
<td></td>
</tr>
</tbody>
</table>

To learn from the incident and reduce the likelihood of future such events, a Report of Findings should be provided to the decision makers for the utility so consideration can be given for changes in facility structure, security, procedures or personnel.
AP 8A – Natural Event
(Flood)

Summary:
This Action Plan applies to flooding events. In general, these events occur with reasonable lead times, and it is possible to take proactive measures, as outlined below. Response and recovery can be time consuming during flood events, as they can involve loss of electrical power supply, damage of structures and equipment, disruptions of service, and injuries to utility personnel.

Initiation and Notification:
This AP should be initiated upon official notification of either a flood "watch" (a flood is possible in your area), or a flood "warning" (flooding is already occurring or will occur soon in your area). Such information will almost certainly be issued in the form of forecasts from the National Weather Service (NWS) and other governmental agencies. Also initiate if actual flooding is discovered.

The [WUERM] will make the decision to contact local response authorities to request possible assistance.

Links to specific RFCs can be found at the following website:
http://www.nws.noaa.gov/oh/hic/rfc.html

The NWS maintains 13 regional River Forecast Centers (RFC) that are responsible for issuing flood forecasts synthesized from hydro-meteorological data. These centers offer current river conditions and observations, as well as forecast and guidance for both major river and flash floods, hydrographs for gauging stations, and flood outlook potentials. Be aware that floods often occur without local precipitation as a result of precipitation upstream.

Flash flood guidance values can also typically be obtained via your local RFC. These values show data suggesting the amount of rain necessary over 1-, 3-, and 6-hour periods that could cause flash floods.

While major floods can take several hours to days to develop, flash floods can take only a few minutes to a few hours to develop.

Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

Equipment Identified:

<table>
<thead>
<tr>
<th>Binoculars</th>
<th>Ropes</th>
</tr>
</thead>
</table>

This equipment is available to assist in the execution of this AP.

Specific Activities:

I. Assess the Problem
If a Flood Watch or Warning is received:
1. Contact local representative of NWS for additional information on exact location and probable extent (stage) of flooding, relative to utility facilities.
2. Use site maps or other available information to assess location of all facilities for location in flood plain.
3. Prioritize pre-flooding activities on basis of flooding potential (in part, based on location).
4. If flooding has already occurred:
 - Conduct site assessment from nearest safe location.
 - Based on peak flood stage, predict and build inventory of equipment likely to be most affected.
 - List equipment needed to restore water service when flood waters recede.

Flood damage is proportional to the volume and the velocity of the water. Floods are extremely dangerous because they destroy through inundation and soaking as well as the incredible force of moving water. High volumes of water can move heavy objects and undermine roads and bridges. Flooding can also facilitate other hazards such as landslides, or cause other hazards such as material hazard events.

II. Isolate and Fix the Problem
The following steps should be taken in preparation for the event:
1. Activate Emergency Operations Center (EOC).
2. Assemble essential personnel and designate duties, such as:
 - Elevate in-place or remove water-sensitive equipment within structures to prevent flood damage.
 - Anchor fuel tanks.
 - Elevate electrical system components.

Steps in advance of flooding obviously will be different than steps in reaction to flooding. Both may be needed for any one flooding event.
AP 8A – Natural Event (Flood)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Take appropriate flood-proofing steps (sandbags or other).</td>
</tr>
<tr>
<td>2</td>
<td>Install sewer backflow valves.</td>
</tr>
<tr>
<td>3</td>
<td>Flood-proof or elevate heating, cooling, and ventilating equipment.</td>
</tr>
<tr>
<td>4</td>
<td>Assemble and stage mobile stand-by generators and auxiliary water pumps.</td>
</tr>
</tbody>
</table>

II. Isolate and Fix the Problem

3. Notify neighboring utilities or other sources of emergency response support if manpower or equipment will be needed.
4. The [IO] is to notify customers, media, and state and local authorities that service may be disrupted and/or that demand reductions may be necessary.
5. Pre-test and/or initiate emergency communications plan.
6. Consider shut-down if flooding appears imminent.

Flood water may have to be pumped out of facilities before utility equipment can be restored. Decision to shutdown must balance protection of utility equipment and maintenance of fire flows.

III. Monitoring

Observe the following recommended practices during the flood event:

- Take pictures of the damage, both of buildings and their contents, for insurance claims.
- Instruct Utility personnel to avoid floodwaters whenever possible.
- If a vehicle stalls in rapidly rising waters, abandon it immediately and climb to higher ground. Vehicles can be swept away in two feet of water.
- Stay out of any building if floodwaters remain around the building.
- Avoid smoking inside buildings. Smoking in confined areas can cause fires.
- Wear sturdy shoes. The most common injury following a disaster is cut feet.
- Use battery-powered lanterns or flashlights when examining buildings. Battery-powered lighting is the safest and easiest, preventing fire hazard for the user, occupants, and building.
- Look for fire hazards. There may be broken or leaking gas lines, flooded electrical circuits, or submerged furnaces or electrical appliances. Flammable or explosive materials may travel from upstream. Fire is the most frequent hazard following floods.
- The [WUERM] or [IO] is to communicate with customers and the Local Emergency Planning Committee (LEPC) as to current conditions.

IV. Recovery and Return to Safety

Once floodwaters recede, the following may be of relevance:

- Check insurance policy for procedures to recover losses, including the national Flood Insurance Program.
- Inspect foundations for cracks or other damage.
- Check power lines for damages.
- Arrange for alternate source of electrical power or fuel for diesel generators, sufficient for period of outage following flood. See AP-7 Power Outage.
- Throw away all food that has come into contact with floodwaters.
- Inspect, clean, rebuild, replace all affected equipment as necessary.
- Contact state and local authorities to determine if there are any restrictions on disposal of materials and debris removed from the site or if a temporary discharge permit (NPDES or other) is needed for the water pumped from the site.

More information can be found here: http://www.fema.gov/nfip

Floodwaters often undermine foundations, causing sinking, floors can crack or break and buildings can collapse. Buildings may have hidden damage that makes them unsafe such as gas leaks or electric hazards. Crack and damage to a foundation can render a building uninhabitable. See AP-7 Power Outage.

Contaminated floodwater contains bacteria and germs. Eating foods exposed to flood waters can make personnel very sick. In the longer-term, mitigation against loss of life and property caused by flood events is principally accomplished before the events, through sensible floodplain management and regulation. This involves strategies to modify flooding and to modify infrastructure to reduce likelihood of damage.

Guidelines to a variety of flood-proofing and elevation methods are available from FEMA and NOAA.
AP 8A – Natural Event
(Flood)

<table>
<thead>
<tr>
<th>Action Plan</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP 8A</td>
<td>Natural Event (Flood)</td>
</tr>
</tbody>
</table>

V. Report of Findings
Assemble relevant personnel to review effectiveness of action plan and reinforce lessons learned.

VI. AP-8A Revision

AP 8B – Natural Event
(Winter Storm)

AP Summary:
This Action Plan applies to winter storm events. In general, these events occur with reasonable lead times, and it is possible to take proactive measures, as outlined below. Response and recovery can be time consuming during such events, and they can involve loss of electrical power supply, damage of structures and equipment, disruptions of service, and injuries to utility personnel.

Initiation and Notification:
When hazardous winter weather conditions are expected to affect the region, the National Weather Service (NWS) issues public advisories. This AP should be initiated upon official notification of a “winter storm watch” or more elevated status. In order of increasing severity, the standard terminology is as follows:

- **Winter Storm Outlook**: Issued prior to a Winter Storm Watch. The Outlook is given when forecasters believe winter storm conditions are possible and are usually issued 3 to 5 days in advance of a winter storm.
- **Winter Weather Advisory**: Issued for accumulations of snow, freezing rain, freezing drizzle, and sleet which will cause significant inconveniences and, if caution is not exercised, could lead to life-threatening situations.
- **Winter Storm Watch**: Alerts the public to the possibility of a blizzard, heavy snow, heavy freezing rain, or heavy sleet. Winter Storm Watches are usually issued 12 to 48 hours before the beginning of a Winter Storm.
- **Winter Storm Warning**: Issued when hazardous winter weather in the form of heavy snow, heavy freezing rain, or heavy sleet is imminent or occurring. Winter Storm Warnings are usually issued 12 to 24 hours before the event is expected to begin.
- **Blizzard Warning**: Issued for sustained or gusty winds of 35 mph or more, and falling or blowing snow creating visibilities at or below ¼ mile; these conditions should persist for at least three hours.

It is expected that the local the Local Emergency Planning Committee (LEPC) will carefully and continually monitor meteorological conditions and forecasts. During such events, the Local Emergency Planning Committee (LEPC) shall be in constant contact with the National Weather Service (NWS) and disseminate information to agencies via conference call, e-mail and broadcast fax.

See the NWS website for current warnings here: NWS Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.
AP 8B – Natural Event
(Winter Storm)

Equipment

- Ropes
- Binoculars
- Panchos

This equipment is available to assist in the execution of this AP.

Specific Activities:

I. Assess the Problem

Winter storms, accompanied by strong winds and blizzard conditions, have resulted in localized power and phone outages; closures of streets, highways, schools, businesses, and nonessential government operations. People have been isolated from essential services in their homes and vehicles. A winter storm may escalate into a catastrophic event paralyzing municipalities, and rural areas for several days. Life threatening situations may occur in which emergency response agencies cannot perform their duties due to extreme weather conditions. Individual jurisdictions may be overwhelmed and need mutual aid assistance.

II. Isolate and Fix the Problem

Snow removal capabilities will vary widely, general procedures are as follows:

Before the storm:
1. Activate Emergency Operations Center (EOC).
3. Release nonessential personnel, as warranted.
4. Assemble essential personnel and designate duties.
5. Typical duties at this stage may include:
 - Fill gravity storage tanks.
 - Test auxiliary power sources.
 - Fill fuel tanks.
 - Secure windows and doors.
 - Mobilize snow removal equipment, as warranted.
 - Man remote stations essential to operations.
 - Stockpile chemicals, food, etc.
 - Discuss needs with electric company.
 - Test back-up communications system.
 - Review mutual aid agreements and verify connections to/from neighboring water systems.
 - Review specific power outage contingency action plan.

During the storm:
1. Notify customers, media, and state and local authorities if service is disrupted or if significant demand management is necessary.
2. Monitor reservoirs.
3. Monitor changes in water quality. If a water quality emergency should develop, follow the appropriate procedure.
4. Open connections with neighboring water systems if necessary.
5. Provide backup power to facilities utilizing mobile generators, as appropriate.

III. Monitoring

In order to monitor the infrastructure status and residents' health during a winter weather event, it is expected that the Utility will assist the Local Emergency Planning Committee (LEPC) in gathering the following types of information:

- Electrical load
- EMS cold-related responses / total responses
- Cold weather-related water main breaks
- Available sheltering centers
- Status of salt and sand stockpiles
- Available snow removal assets
APPENDIX A - ACTION PLANS

AP 8B – Natural Event (Winter Storm)

Cold-related incidents / concerns

During winter weather emergencies, heavy snowfall, coupled with icy roads or ice accumulations on aboveground electrical transmission lines, can result in vehicular accidents and transmission line failure. Power outages during winter weather events can pose serious problems, particularly among those communities where life-sustaining equipment (LSE) is a necessity.

III. Monitoring

Personnel should avoid traveling by vehicle, but if necessary, it is important to communicate destinations, routes, and expected arrival times. If vehicles get stuck along the way, help can be sent along the predetermined route. If personnel do get stuck:

- Staff should stay with their car and not try to walk to safety.
- Tie a colored cloth to the antenna for rescuers to see.
- Start the car and use the heater for about 10 minutes every hour. Keep the exhaust pipe clear so fumes won’t back up in the car.
- Leave the overhead light on when the engine is running to be seen.
- Keep arms and legs moving to keep blood circulating and to stay warm and keep one window away from the blowing wind slightly open to let in air.

During heavy storms, search and rescue operations, movement of emergency response agencies to assigned duties and restoration of essential services are likely to become the primary focus of the EOC.

Priorities of response forces, prioritization of the use of snow removal equipment and allocation of all critical resources and response personnel will be the responsibility of the EOC.

IV. Recovery

And Return to Safety

It is recommended that staff observe the following safety tips in recovery from winter storm events:

- After the storm, if personnel are required to shovel snow, be extremely careful. It is physically strenuous work, requiring frequent breaks. Avoid overexertion. Heart attacks from shoveling heavy snow are a leading cause of deaths during winter.

- Walk carefully on snowy, icy sidewalks.

V. Report of Findings

Assemble relevant personnel to review effectiveness of action plan and reinforce lessons learned.

VI. AP-8B Revision Dates
AP 8C – Natural Event
(Tsunami)

AP Summary:
This Action Plan applies to Tsunami events. Although this event can come about with very little warning, there are some things that can be done to prepare for a Tsunami. Response and recovery can be time-consuming during such events, and they can involve loss of electrical power supply, damage of structures and equipment, disruptions of service, and injuries to utility personnel.

Initiation and Notification:
Initiation of Tsunami AP will occur when the NWS has determined a “Hurricane Watch” is in effect. The general terminology they utilize is as follows, in order of increasing severity:

- **Advisory**: Hurricane and storm information is disseminated to the public every six hours.
- **Special Advisory**: Information is disseminated when there is significant change in storm-related weather conditions.
- **Gale Warning**: Sustained winds of 35-54 mph and strong wave action are expected.
- **Storm Warning**: Sustained winds of 55-73 mph are expected.
- **Hurricane Watch**: There is a threat of hurricane conditions within 24-36 hours.
- **Hurricane Warning**: A hurricane is expected to strike within 24 hours or less, with sustained winds of 74 mph or more and dangerously high water.
- **Tropical Disturbance**: A moving area of thunderstorms is in the tropics.
- **Tropical Depression**: An area of low pressure, rotary circulation of clouds and winds up to 38 mph is identified.
- **Tropical Storm**: A storm characterized by counterclockwise circulation of clouds and winds 39-73 mph is brewing.

The Atlantic and Caribbean hurricane season runs from June 1 through November 30, with the Eastern Pacific hurricane season running from May 15 through November 30.

See National Hurricane Center website here: [NHC Notification phone numbers](#)

Equipment Identified:

<table>
<thead>
<tr>
<th>Specific Activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Assess the Problem</td>
</tr>
<tr>
<td>II. Isolate and Fix the Problem</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Specific Activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Assess the Problem</td>
</tr>
<tr>
<td>II. Isolate and Fix the Problem</td>
</tr>
</tbody>
</table>
II. Isolate and Fix the Problem

Grounds and Common Areas:

1. Check inventory of emergency repair equipment and supplies (i.e., sand and sand bags, hand shovels, power equipment, fuel, batteries, flashlights, portable radio, first aid kits, etc.). Resupply if possible.
2. Stock service vehicles with equipment and supplies.
3. Fuel all vehicles and emergency generators.
4. Move service vehicles to high ground (above expected flood crest).
5. Check all communications equipment and charge or replace batteries (i.e., two way radios, cell phones, walkie-talkies, pagers, etc.).
6. Sand bag critical areas.
7. Board up critical windows and doors to prevent wind damage.
8. Shut down exposed pipes at river crossing to prevent discharge of raw sewage or to prevent loss or contamination of potable water, if the pipes brake.

Administration and Laboratory Buildings:

1. Remove portable electrical equipment and small motors from the flood zone.
2. Remove all sensitive laboratory equipment from the flood zone, where possible.
3. Remove or store computers in a safe area.
4. Remove or store all important records in a safe area.
5. Move vital records such as built drawings, wiring diagrams, etc. to the emergency operations center or command post.
6. Remove or store furnishings in a safe place, when practical.
7. Disconnect electrical power to the building, if it is evacuated.

Treatment Plant and Pumping Stations:

1. Fill empty tanks with water to prevent floating.
2. Disconnect power to all units in the flood zone. Have the power utility disconnect power to the entire plant, if ordered to evacuate the facility.
3. Remove or move chemicals to a safe area. If chemicals are removed from an underground or above ground tank, fill the tank with water to prevent floating.
4. Remove fuel from underground tanks to prevent contamination of the fuel and to protect the environment. If possible move above ground fuel storage tanks to a safe area (fuel will be need for emergency and plant vehicles until new supplies arrive). If it is not practical to move above ground fuel storage tanks, remove the fuel and fill tanks with water.
5. Remove electrical motors, where possible.
6. When it is not practical to remove large motors, wrap the motors in plastic and seal as tight as possible. This will not keep the motor from getting wet, but will protect the motor from silt, mud, and dirt getting into the windings. Submerged motors can be washed with clean water and dried, and in most case restored to service.
7. Remove shop tools and electrical hand tools to the emergency operations center or command post.
8. For drinking water systems, as appropriate try to have elevated storage at full capacity.

III. Monitoring

1. Emergency power should be utilized to the extent necessary and available to maintain pressure within the distribution system.
2. Systems which have been flooded or otherwise had bacterial quality compromised must be disinfecting their water system and maintaining chlorine residuals throughout the water system.
3. Where such flooding, loss of pressure, or other damage has occurred resulting in potential bacterial compromise, CVWD should Issue "Boil Water", "Do not Drink", or "Do not Use" orders and Press Releases as appropriate. See Section XX of ERP for Press Release Forms until further testing can be conducted and the situation normalizes. If necessary, a "Boil Water" notice must be announced as soon...
IV. Recovery and Return to Safety

General:
1. For water utilities, the first priority should be restoring fire flow and pressure.
2. For wastewater utilities, the first priority should be to restore primary treatment and disinfection.
3. Line up and schedule emergency operations and clean up crews.
4. Make arrangements with the local power utility to repair and restore power to the plant as a primary customer. Power should not be turned on to buildings or process units until the floodwater has been removed and the area is safe to occupy.
5. Notify State and Federal Agencies when the facility is back in operation.
6. The [IO] is to notify the media where to access information and press advisories, such as boil water orders, beach closures, and other public instructions.
7. Make arrangements with local companies to deliver materials and supplies and to provide heavy equipment needed to make repairs to the plant.
8. Make arrangements with local companies to deliver materials and chemicals as soon as it is safe, and facilities are prepared and ready for operation.
9. Contact State and local authorities to determine if there are any restrictions on disposal of materials and debris removed from the site or if a temporary discharge permit (NPDES or other) is needed for the water pumped from tanks and other flooded structures.

Grounds and Common Areas:
1. Inspect all service vehicles for water and wind damage.
2. Check site including remote locations for visible damage to power lines and above ground structures.
3. Inspect all sewage collection systems for damage and blockages. Most collection systems will require cleaning after a flood.
4. Inspect all exposed pipes, especially at river crossings, for leakage. Broken pipes can discharge raw sewage into rivers and streams. Broken water pipes including service connections to severely damaged structures can provide a source of contamination and/or pressure loss to the potable water system.
5. Check all remote control systems, including telemetering, telephone, and SCADA, etc.

Administration and Laboratory Building:
1. Check windows and doors for wind damage. Replace and repair as needed to prevent further damage and to provide security.
2. Check roofs for water and wind damage. Make repairs as needed to prevent further damage.
3. Pump out and remove silt, mud and sand from basements and other below grade areas.
4. Clean and disinfect masonry walls with bleach solution to prevent the growth of mold and mildew.
5. Remove all plasterboard, wallboard, and sheet rock that is wet or shows signs of water damage. Clean and disinfect all the interior studs and other support structures behind the damaged walls with bleach solution to prevent the growth of mold and mildew.
6. Inspect all switchgear, motor control centers, electrical boxes, junction boxes, and other electrical equipment in flooded areas for silt and sand or loose connections. Boxes should be cleaned and dried with portable or hand held dryers before the electrical power is restored.
7. Thoroughly clean all wet carpets. It is advisable to remove carpets for cleaning. If removing the carpets is not practical, carpets should be steam cleaned, disinfected and mechanically dried. The carpets also should be treated with an anti-bacterial agent to prevent the growth of mold and mildew.
AP 8C – Natural Event (Tsunami)

<table>
<thead>
<tr>
<th>IV. Recovery And Return to Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pump out all tanks, wet wells, dry wells, channels, vaults and pits to remove silt, mud, sand, and debris. In some cases washing down walls will be necessary before returning to service. Make sure you have all the necessary permits to dispose of the collected material and for discharging the wastewater.</td>
</tr>
<tr>
<td>2. Inspect all equipment, clean and lubricate.</td>
</tr>
<tr>
<td>3. Inspect all switchgear, motor control centers, electrical boxes, junction boxes, and other electrical connections in flooded areas for silt and sand or lose connections. Boxes should be flushed with fresh water and dried before the electrical power is restored. Breaker boxes and other contacts may need additional cleaning to remove corrosion, especially if the damage was caused by salty or brackish water.</td>
</tr>
<tr>
<td>4. Inspect all electric motors. Generally, it is more cost-effective to replace small flood damaged motors than to try and repair them. In some cases, motors can be flushed with de-ionized water. Be sure the motor is thoroughly (oven dried) dry before restoring power. Starters and other electrical controls may also be damaged and will need to be replaced.</td>
</tr>
<tr>
<td>5. Large motors that were not removed but were wrapped in plastic should be inspected for damage. Be sure the motor is thoroughly dry before restoring power. However, having the motors cleaned and dried by motor or armature specialists is recommended. Starters and other electrical controls may also be damaged and need to be replaced.</td>
</tr>
<tr>
<td>6. Large horsepower motors that were not wrapped in plastic should be removed and sent out for cleaning and drying. Check with the motor or armature specialists in your area. They often have equipment to clean and ovens to dry motors under controlled temperatures.</td>
</tr>
<tr>
<td>7. Inspect and clean debris from all air intakes and vents.</td>
</tr>
<tr>
<td>8. Inspect all chemical storage and feed equipment to make sure that the equipment is undamaged and is properly calibrated.</td>
</tr>
<tr>
<td>9. Chemical and fuel tanks that were filled with water should be pumped out and restocked with fresh materials. Caution: Water from fuel tanks may still contain hydrocarbon residues and may require special handling and disposal.</td>
</tr>
<tr>
<td>10. Check and refuel emergency generators in the event of future power outages. If generators and diesel engines have been flooded, they will need to be overhauled or engines rebuilt. Getting emergency power capability restored, should be a high priority. Renting portable generators or pumps should also be considered.</td>
</tr>
</tbody>
</table>

V. Report of Findings

Assemble relevant personnel to review effectiveness of action plan and reinforce lessons learned.

VI. AP-8C Revision Dates

AP 8D – Natural Event (Earthquake)

AP Summary:
This Action Plan applies to earthquake events. In general, these events occur without any lead times, making it impossible to take proactive measures. Response and recovery can be time consuming during such events, and they can involve loss of electrical power supply, damage of structures and equipment, disruptions of service, and injuries to utility personnel.

Initiation and Notification:
An earthquake usually occurs without any type of warning. Due to the suddenness, all personnel should attempt to find immediate shelter. This may include:
- Standing in a doorway and bracing your hands and feet against each side.
- Getting under a desk or heavy table.
- Standing flat against an interior wall.
- Do not seek cover under laboratory tables or benches as chemicals could spill and harm personnel.

After an earthquake has stopped, initiate this earthquake AP 8D. Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

Equipment Identified:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific Activities:

I. Assess the Problem
Earthquakes can cause significant power outages because of the impact on outside generation and transmission lines. After a major earthquake, power might be interrupted for an extended period of time over the entire operations area. In this instance, power restoration will most probably be slow and, depending upon the infrastructure damage, localized. Some isolated areas could take considerably longer for power restoration than others.

II. Isolate and Fix the Problem
General earthquake procedures during an earthquake are as follows:
1. Seek shelter under a deck, table, doorway, or inside wall.
2. Once the shaking has stopped, gather valuables and quickly make your way outside. (DO NOT USE ELEVATORS.)
3. Avoid electric wires, poles and equipment, once outside.
4. Prepare for aftershocks.

III. Monitoring
At all times, personnel should observe the following general steps:
- Stay calm and await instructions from the designated official.
- Keep away from overturned fixtures, windows, filing cabinets, and electrical power.
- Provide assistance and/or call for medical help for injured employees as needed.
- If major structural damage has occurred, order a complete evacuation. The building should be inspected by trained personnel for damage before reentry.
- Protect from further danger by putting on long pants, a long-sleeved shirt, sturdy shoes, and work gloves.
- Look for and extinguish small fires. Eliminate fire hazards.
AP 8D – Natural Event (Earthquake)

<table>
<thead>
<tr>
<th>IV. Recovery And Return to Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor the radio for instructions.</td>
</tr>
<tr>
<td>Expect aftershocks.</td>
</tr>
<tr>
<td>Use the telephone only to report life-threatening emergencies.</td>
</tr>
</tbody>
</table>

IV. Recovery And Return to Safety

General earthquake procedures after an earthquake are as follows:

1. **Activate Emergency Operations Center (EOC).**
2. **Contact emergency assistance (local police, local fire department, rescue squad, etc) as necessary to respond to injuries of staff.**
3. **The [IO] is to notify customers, media, and state and local authorities if service is disrupted or if significant demand management is necessary.**
4. **Inspect facilities for structural damage, including: buildings, storage tanks, pipelines, and process equipment. Consider the use of an outside engineering consultant.**
5. **Prioritize and repair water main leaks.**
6. **Contact neighboring purveyors for mutual aid arrangements, and open connections as needed.**
7. **Respond to side effects (loss of power, fire, chemical spills, etc.)**

V. Report of Findings

Assemble relevant personnel to review effectiveness of action plan and reinforce lessons learned.

VI. AP-8D Revision Dates

AP 9 – Water Supply Interruption

AP Summary:

This action plan applies to water supply interruptions. These events will vary in scale from compromised incremental supply volumes to complete, catastrophic loss of water supply. The ability for a utility to successfully respond to a catastrophic water supply interruption will be highly correlated to the existence of interconnections and alternative sources of supply.

Initiation and Notification:

Catastrophic water supply interruptions will generally be identified by other events, such as physical equipment damage, severe weather or others, which are likely to have a specific direct action plan. Incremental interruptions due to longer-term events such as drought or acute loss of one source, will lead to a prescribed series of contingency measures, as outlined below.

It is recognized that many utilities will already have an action plan in place to address this event. Notification phone numbers can be obtained from the Organization Contact List in the Appendices as well as from Section XX of the ERP.

Equipment Identified:

This equipment is available to assist in the execution of this AP.

Specific Activities:

I. **Assess the Problem**

There are a number of potential levels of severity involved in a water supply interruption. A series of stages of action corresponding to increasing impacts on water are:

| Normal Conditions |
| Water Alert |
| Water Warning |
| Water Crisis |
| Water Emergency |

II. **Isolate and Fix the Problem**

Each stage has specific customized definitions, in terms of percent of Water Supply reduction, with appropriate actions or restrictions at each stage. Utilities will have a series of escalating penalties for successive violations of restrictions. These stages are:

| Normal Conditions |
| – Normal conditions apply. Water is |
| Water Alert |
| Water Warning |
| Water Crisis |
| Water Emergency |
AP 9 – Water Supply Interruption

II. Isolate and Fix the Problem

- **Water Alert**
 - A 5% or greater reduction in water usage is to meet the immediate needs of customers. Voluntary conservation encouraged. The water shortage situation is explained to the public and voluntary water conservation is requested (see standard press releases). CVWD maintains an ongoing public information campaign consisting of distribution of literature, speaking engagements, bill inserts, and conversation messages printed in local newspapers.

- **Water Warning**
 - A 15% or greater reduction in water usage is to meet the immediate needs of customers. Water supply shortage is moderate. The utility aggressively continues its public information and education programs. Consumers are asked for a 15 percent or greater voluntary or mandatory water use reduction. Additional landscape irrigation restrictions may be implemented. Businesses may be asked not to serve water in restaurants unless requested.

- **Water Crisis**
 - A 30% or greater reduction in water usage is to meet the immediate needs of customers. Water supply shortage is severe. Additional requirements may include:
 - Dramatic landscape irrigation restrictions;
 - Restrictions on use of potable water to fill or refill new swimming pools, artificial lakes, ponds, or streams until the water crisis is declared over;
 - Prohibition of water use for ornamental ponds and fountains;
 - Restrictions on washing of automobiles and equipment (such as requiring that it shall be done on the lawn or at a commercial establishment that uses recycled or reclaimed water);
 - Restriction of flushing of sewers or fire hydrants to cases of emergency and essential operations, and;
 - Introduction of a permanent water meter on existing non-metered services and/or flow restrictors on existing metered services at customer's expense upon receipt of the second water violation.

- **Water Emergency**
 - A 50% or greater reduction in water usage is to meet the immediate needs of customers. Water shortage is critical. Additional requirements may include:
 -Disallowing all landscape irrigation;
 -Disallowing potable water use for construction purposes such as dust control, compaction, or trench jetting. In addition, large industrial users, for example canneries and other food manufacturers, may be required to reduce or cease all water use.

In addition to these incremental stages, the Utility should prepare for a catastrophic interruption of water supplies. A catastrophic event that constitutes a proclamation of a water shortage would be any event, either natural or manmade, that causes a severe water supply interruption, synonymous with or with greater severity than the “Water Warning” water supply shortage condition outlined above.

III. Monitoring

Communication of water supply interruption stages should be handled according to the identified public notification procedures. Press releases should also be handled according to the identified utility procedures. See ERP Appendix F for press releases.

IV. Recovery and Return to Safety

Alternative water supply options have been identified in the utility emergency response plan (ERP). In the event of a catastrophic, immediate need, it is likely these will be utilized. This includes information on local interconnections with neighboring sources, area water haulers, temporary storage options, etc.

If there have been lines with no water or negative pressures, a precautionary boil order should be issued by the utility until line tests on two consecutive days show the lines to be safe. Chlorine residuals should be increased temporarily.

The water system may have to valve off portions of the distribution system until above ground storage tanks are refilled. Valved off areas have the potential for external contamination to enter the system through leaking joints or cracked pipe. Before placing a valved off area back in service, the system should issue a precautionary boil order, increase the chlorine residual throughout the system and obtain safe bacteriological samples from representative areas of the system on two consecutive days. The precautionary boil order may be lifted once the See ERP Alternative Water Sources, Section XX.
AP 9 – Water Supply Interruption

Required safe samples are obtained. The system should be repressurized slowly to avoid water hammer and the potential for damage to the lines. Air should be bled from lines as they refill since entrapped air can impede flows and may cause line damage.

V. Report of Findings

In addition to completing the appropriate filings with local authorities and agencies, it is recommended that the Utility assemble the relevant personnel to review the effectiveness of the action plan and reinforce lessons learned in the process.

VI. AP-9 Revision Dates

AP 10A – Bomb Threat (Telephone / In Person)

AP Summary:

This Action Plan applies to the receipt of a bomb threat via telephone or in person. It is important to develop this plan in counsel with the local police and the local fire department services.

Initiation and Notification:

As soon as possible, notify:

911

The WUERM should then notify others as appropriate. Examples include:

Local Fire Department
Local Police Department
FBI
ATF

Notification phone numbers can be obtained from the Organization Contact List in Appendix C.

Equipment Identified:

Specific Activities:

I. Assess the Problem

As a rule, all bomb threats should be considered credible until proven otherwise.

Due to the diversity of facilities, each utility is encouraged to undertake an audit of their own facilities and consult with local emergency services such as fire and police while creating their evacuation plan. If it is not possible during the creation, then certainly consult before instituting the plan.

II. Isolate and Fix the Problem

Threat received via Telephone

1. Remain Calm

It is always desirable that more than one person listens in on the call. To do this, have a pre-established signaling system in
AP 10A – Bomb Threat (Telephone / In Person)

<table>
<thead>
<tr>
<th>II. Isolate and Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cooperate with the individual or group.</td>
</tr>
<tr>
<td>2. Try to get the attention of a co-worker.</td>
</tr>
<tr>
<td>4. Co-worker call [WUERM].</td>
</tr>
<tr>
<td>5. Create a description of the adversary using a Suspect Description Form. See ERP Appendix Section XX.</td>
</tr>
<tr>
<td>6. Direct any media questions to the [Information Officer], [IO].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>During a search of the building, rapid two-way communication is essential.</td>
</tr>
<tr>
<td>1. Use existing installed telephones.</td>
</tr>
<tr>
<td>2. Alert medical personnel to stand by in the event of an accident caused by the explosion of the devise.</td>
</tr>
<tr>
<td>3. Alert fire department to stand by.</td>
</tr>
<tr>
<td>In event of an explosion:</td>
</tr>
<tr>
<td>1. Get out of the building as quickly as calmly as possible.</td>
</tr>
<tr>
<td>2. IF items are falling from bookshelves or the ceiling, THEN get under a sturdy table or desk until the situation has stabilized enough for your safe passage.</td>
</tr>
<tr>
<td>3. Ensure your own safety before trying to help others.</td>
</tr>
<tr>
<td>DO NOT USE RADIOS OR OTHER WIRELESS DEVICES DURING A SEARCH. The radio transmission energy can cause premature detonation of an electric initiator (blasting cap).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. Recovery and Return to Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF evacuated, THEN do not return to the building until it is determined safe by appropriate authorities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. Report of Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debrief after every bomb threat response to improve procedures. The Utility [Security Director] should file an internal report for the Utility’s files and also provide information as requested to Local.</td>
</tr>
</tbody>
</table>
AP 10A – Bomb Threat
(Telephone / In Person)

<table>
<thead>
<tr>
<th>VI. AP 10A Revision Dates</th>
</tr>
</thead>
</table>

AP 10B – Bomb Threat
(Suspicious Package / Letter)

AP Summary:
This Action Plan applies to the receipt of a suspicious package / letter or a bomb found at the utility. It is important to develop this plan in consultation with your local police and local fire department.

Initiation and Notification:
Initiate this AP as soon as a suspicious package or letter has been discovered. As soon as possible, notify:

- 911
- [WUERM]
- The WUERM should then notify others as appropriate. Examples include:
 - Local Fire Department
 - Local Police Department
 - FBI
 - ATF

Notification phone numbers can be obtained from the Organization Contact List in Appendix C of the ERP.

Equipment Identified:

Specific Activities

1. **I. Assess the Problem**

 Determining if a package is suspicious involves a careful evaluation. Some points to consider are:

 - Incorrect address and or titles
 - Titles but no names
 - Visual distractions
 - Possess a foreign postmark, airmail, or special delivery markings (Personal, Confidential, Special Delivery, Open By Addressee Only)
 - Return address irregularities, including no address, one not matching the postmark, or not familiar
 - Badly typed or poorly written addresses
 - A package not expected by the addressee
 - Deficient or excessive postage, unusual stamps
 - Packages within packages

 Most bombs are homemade and can look like nearly anything. Suspect anything that looks unusual.

 Although the presence of one of these conditions does not mean, for certain, that there is a bomb in the package, check further if any of these indicators are present. Find out if the recipient is expecting the package, recognizes the return address, and if the package is the right size for the item expected. Verify the return address. If any of these comes up a “no,” investigate further and alert [WUERM], and police.
AP 10B – Bomb Threat
(Suspicious Package / Letter)

I. Assess the Problem
- Odd shaped, unevenly-weighted, lopsided, or lumpy
- Over-wrapped with excessive securing material such as tape or string
- Possess protruding wires or tinfoil
- Foul Odor
- Left behind by someone known to carry a grudge against you, your facility, someone at your facility
- Oily, stained, or crystalization on the outside
- Rigid or bulky
- Be from a company/person you do not recognize
- Be hand delivered by a person other than normal delivery persons, especially by a person using a non-delivery type vehicle

II. Isolate and Fix the Problem
1. Remain Calm.
2. Do not touch or move package.
3. Notify the [WUERM] if not already done.
4. While waiting for instructions, clear the area around the object and try to determine ownership. (Did anyone see who left this here?)

III. Monitoring
- Any sound coming from object
- In event of an explosion
- Get out of the building as quickly as calmly as possible.
- IF items are falling from bookshelves or the ceiling, THEN get under a sturdy table or desk until the situation has stabilized enough for your safe passage.
- Ensure your own safety before trying to help others.

IV. Recovery and Return to Safety
- IF evacuated, THEN do not return to the building until it is determined safe by appropriate authorities.

V. Report of Findings
- Debrief after every bomb threat response to improve procedures.
The Utility [Security Director] should file an internal report for the Utility's files and also provide information as requested to Local Law Enforcement and other outside agencies.

VI. AP 10B Revision Dates
AP 10C – Bomb Threat
(Written Threat Received)

AP Summary:
This Action Plan applies to the receipt of a written bomb threat. It is important to develop this plan in counsel with your local police and local fire department.

Initiation and Notification:
- As soon as a written threat has been discovered, initiate this AP as soon as possible.
- As soon as possible, notify:
 - 911
 - [WUERM]

The WUERM should then notify others as appropriate. Examples include:
- Local Fire Department
- Local Police Department
- FBI
- ATF

Notification phone numbers can be obtained from the Organization Contact List in Appendix C of the ERP.

Equipment Identified:

<table>
<thead>
<tr>
<th>Specific Activities</th>
<th>Equipment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Assess the Problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Isolate and Fix the Problem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific Activities

<table>
<thead>
<tr>
<th>I. Assess the Problem</th>
<th>Specific Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>As a rule, all bomb threats should be considered credible until proven otherwise.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Isolate and Fix the Problem</th>
<th>Specific Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Threats:</td>
<td></td>
</tr>
<tr>
<td>1. Remain Calm.</td>
<td></td>
</tr>
<tr>
<td>2. Save all materials, including any envelope or container.</td>
<td></td>
</tr>
<tr>
<td>3. Once recognized as a bomb threat, avoid further handling.</td>
<td></td>
</tr>
<tr>
<td>4. Leave the message where found.</td>
<td></td>
</tr>
<tr>
<td>5. Do not alarm others; however, every effort must be made to retain evidence such as fingerprints, handwriting, or typewriting, paper, and postal marks. These will prove essential in tracing the threat and identifying the writer.</td>
<td></td>
</tr>
<tr>
<td>Let a trained bomb technician determine what is or is not a bomb. Develop a plan for conducting a bomb search. Establish time considerations in the plan commensurate with utility size and resources. For example, if time until detonation is less than ½ hour, immediate evacuation may be advisable. If greater than ½ hour a search should be conducted. Consult with the police, fire department, or other local authority to determine who will conduct the search. In most cases, because of their familiarity with the facility, the search is best conducted by utility personnel, however this requires that they be trained properly in search techniques. The police or fire department may be available to assist in the training or be able to advise as to who can provide the training.</td>
<td></td>
</tr>
<tr>
<td>If a bomb is found note:</td>
<td></td>
</tr>
<tr>
<td>1. Exact location of the object</td>
<td></td>
</tr>
<tr>
<td>2. Size of object</td>
<td></td>
</tr>
<tr>
<td>3. Type of container or wrappings and marking on package</td>
<td></td>
</tr>
<tr>
<td>4. Any sound coming from object</td>
<td></td>
</tr>
<tr>
<td>Note that a bomber wishing to cause personal injuries could place a bomb near an exit normally used to evacuate and then call in the threat.</td>
<td></td>
</tr>
<tr>
<td>Due to the diversity of facilities, each utility is encouraged to undertake an audit of their own facilities and consult with local emergency services such as fire and police while creating their evacuation plan. If it is not possible during the creation, then certainly consult before instituting the plan.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Monitoring</th>
<th>Specific Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>During a search of the building, rapid two-way communication is essential.</td>
<td></td>
</tr>
<tr>
<td>Use existing installed telephones.</td>
<td></td>
</tr>
<tr>
<td>Alert medical personnel to stand by in the event of an accident caused by the explosion of the devise.</td>
<td></td>
</tr>
<tr>
<td>Alert fire department to stand by. In event of an explosion:</td>
<td></td>
</tr>
<tr>
<td>1. Get out of the building as quickly as calmly as possible.</td>
<td></td>
</tr>
<tr>
<td>2. IF items are falling from bookshelves or the ceiling, THEN get under a sturdy table or desk. DO NOT USE RADIOS OR OTHER WIRELESS DEVICES DURING A SEARCH. The radio transmission energy can cause premature detonation of an electric initiator (blasting cap).</td>
<td></td>
</tr>
</tbody>
</table>
AP 10C – Bomb Threat
(Written Threat Received)

<table>
<thead>
<tr>
<th>IV. Recovery and Return to Safety</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Report of Findings</td>
<td></td>
</tr>
<tr>
<td>VI. AP 10C Revision Dates</td>
<td></td>
</tr>
</tbody>
</table>

Appendix B

System and Facility Information
Distribution System Isolation Plan

System Shut Down and Isolation Plan

<table>
<thead>
<tr>
<th>SYSTEM COMPONENT</th>
<th>METHOD OF SHUTDOWN OR ISOLATION</th>
<th>LOCATION & PERSON TO PERFORM SHUTDOWN OR ISOLATION</th>
<th>SPECIAL REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated</td>
<td>Manual</td>
<td>SCADA Controlled</td>
<td>Manual Operation</td>
</tr>
</tbody>
</table>

Carpinteria Reservoir
- SCADA Manual Valve in Valve Pit
- COMB or CVWD in in/out vault near reservoir
- Confined Space – certification and PPE required for entry.
- Locked Access - Key required for valve vault entry hatch.

CVWD Wells (future)
- SCADA PLC/MCC at each site
- Water Quality Specialist or Op's Manager
- Locked Access - Key required for site entry.

Gobernador Reservoir
- None
- Valve located in altitude valve vault
- Water Quality Specialist or Op's Manager
- Locked Access - Key required for site entry.

Shepard Mesa Reservoir
- None
- Valve located on in/out pipe at tank.
- Water Quality Specialist or Op's Manager
- Do not open locked valve. Close other valve.

Pumps stations
- SCADA PLC/MCC at each site
- Water Quality Specialist or Op's Manager
- Locked Access - Key required for site entry.
CA Dept. of Health Services Recommended Emergency Sampling Kit

<table>
<thead>
<tr>
<th>Quantity Per Kit</th>
<th>Total Quantity Needed (50 Kits)</th>
<th>Size</th>
<th>Description</th>
<th>Supplier</th>
<th>Page No.</th>
<th>MFG Number</th>
<th>Catalog No.</th>
<th>Quantity to Order</th>
<th>Unit Price</th>
<th>Extended Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>150</td>
<td>1 L</td>
<td>Wheaton Glass 24/case</td>
<td>VWR</td>
<td>190</td>
<td>219820</td>
<td>16159-903</td>
<td>7</td>
<td>$166.46</td>
<td>$1,165.22</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>1 L</td>
<td>Amber Glass 12/case</td>
<td>VWR</td>
<td>176</td>
<td>15900-142</td>
<td>17792-1250</td>
<td>17</td>
<td>$26.20</td>
<td>$445.40</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>2.5 L</td>
<td>Amber Glass 6/case</td>
<td>VWR</td>
<td>179</td>
<td>15900-182</td>
<td>17792-1250</td>
<td>25</td>
<td>$26.10</td>
<td>$652.50</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>40 ml</td>
<td>Amber Glass Vials 72/case</td>
<td>VWR</td>
<td>175</td>
<td>15900-024</td>
<td>17792-1250</td>
<td>4</td>
<td>$70.15</td>
<td>$280.60</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>125 ml</td>
<td>Naïon Polypolyene Wide Mouth Bottle 12/case</td>
<td>Fischer Scientific</td>
<td>191</td>
<td>2105-0004</td>
<td>02893A</td>
<td>9</td>
<td>$19.74</td>
<td>$177.66</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>2 L</td>
<td>Plastic 64 oz Type F Natural</td>
<td>Maylar Plastics</td>
<td>150</td>
<td>000-0004</td>
<td>15900-024</td>
<td>150</td>
<td>$0.458</td>
<td>$68.70</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>125 ml</td>
<td>Amber Glass w/septa 12/case</td>
<td>VWR</td>
<td>176</td>
<td>15900-146</td>
<td>17792-1250</td>
<td>9</td>
<td>$17.75</td>
<td>$159.75</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>250 ml</td>
<td>Disposable Plastic 12/case</td>
<td>VWR</td>
<td>176</td>
<td>15900-146</td>
<td>17792-1250</td>
<td>9</td>
<td>$1.50</td>
<td>$150.00</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>10 L</td>
<td>Collapsible Carboy UDPE Cylinders 12/case</td>
<td>VWR</td>
<td>189</td>
<td>186-25</td>
<td>17792-1250</td>
<td>9</td>
<td>$58.74</td>
<td>$528.66</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>pair</td>
<td>Vinyl gloves (disposable) Large 1000/case</td>
<td>VWR</td>
<td>746</td>
<td>PHZD75S2</td>
<td>17792-1250</td>
<td>1</td>
<td>$177.41</td>
<td>$177.41</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>each</td>
<td>Moldex Type N95 particulate respirator 20/pk</td>
<td>Fischer Scientific</td>
<td>1544</td>
<td>1501</td>
<td>19-003-24A</td>
<td>5</td>
<td>$21.07</td>
<td>$105.35</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>each</td>
<td>Disposable Lab Jacket Kimberly Clark "Kleen Guard" Size XL 15/case</td>
<td>Fischer Scientific</td>
<td>35</td>
<td>36544</td>
<td>17-981-41H</td>
<td>7</td>
<td>$80.00</td>
<td>$560.00</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>each</td>
<td>Boutein Softsides Goggle</td>
<td>Central Stores</td>
<td>45-132-</td>
<td>12000</td>
<td>45-132-12000</td>
<td>100</td>
<td>$1.89</td>
<td>$189.00</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>each</td>
<td>Connector Clamps with thumbscrew 10/pack</td>
<td>Fischer Scientific</td>
<td>410</td>
<td>14-196A</td>
<td>14-196A</td>
<td>10</td>
<td>$14.18</td>
<td>$141.80</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>9 x 18</td>
<td>Zip-lock LDPE Sample bags Naïon grain 250/case</td>
<td>VWR</td>
<td>55</td>
<td>6255-0918</td>
<td>62766-130</td>
<td>2</td>
<td>$139.45</td>
<td>$2,789.00</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>roll</td>
<td>Lab grade marker tape 1” (12/case)</td>
<td>VWR</td>
<td>926</td>
<td>36425-067</td>
<td>36425-067</td>
<td>4</td>
<td>$50.04</td>
<td>$200.16</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>each</td>
<td>Biohazard Bags 12 x 24 (200/case)</td>
<td>VWR</td>
<td>52</td>
<td>11215-898</td>
<td>11215-898</td>
<td>1</td>
<td>$119.16</td>
<td>$119.16</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>each</td>
<td>Antiseptic wipes (pads) 250/case</td>
<td>VWR</td>
<td>1945</td>
<td>21999-553</td>
<td>21999-553</td>
<td>1</td>
<td>$123.80</td>
<td>$123.80</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>grams</td>
<td>Sodium Thiosulfate granules Mallinckrodt 500 grams</td>
<td>VWR</td>
<td>2320</td>
<td>MK809612</td>
<td>17969-130</td>
<td>1</td>
<td>$37.95</td>
<td>$379.50</td>
</tr>
<tr>
<td>40</td>
<td>2000</td>
<td>each</td>
<td>Adhesive labels 500/roll</td>
<td>Stock</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>$6.00</td>
<td>$30.00</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>30.8 Qt</td>
<td>Collapsible Cooler (Igloo Softmate 48)</td>
<td>Igloo</td>
<td>Softmate 48</td>
<td>48</td>
<td>48</td>
<td>100</td>
<td>$32.36</td>
<td>$3,236.00</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>30 Gal</td>
<td>Plastic Storage Bin (Stereit Ultra)</td>
<td>Sterlrite Corp.</td>
<td>17454204</td>
<td>Ultra 30 Gal</td>
<td>17454204</td>
<td>54</td>
<td>$11.49</td>
<td>$620.46</td>
</tr>
</tbody>
</table>

Total: $9,831.03 **Price per Kit:** $196.62
The individual(s) who discover the threat or emergency situation will immediately notify CVWD’s 24-hour Call Center. The Dispatcher at the Call Center will then notify the Water Utility Emergence Response Manager or WUERM. The remainder of the CVWD staff will be notified according to the table below.

Table C-2

<table>
<thead>
<tr>
<th>Name and Title</th>
<th>Responsibilities during an Emergency</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Thompson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cater Treatment Plant Operations Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omar Castro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Treatment Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omar Castro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Distribution Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omar Castro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob McDonald</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data (IT) Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob McDonald</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Water Utility Engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles Hamilton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Manager of Water Utility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles Hamilton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omar Castro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luis Chiorn, City Of Santa Barbara</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob Wignot, COMB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Source Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omar Castro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Manager</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-3
Local Agencies
<table>
<thead>
<tr>
<th>Name</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatcher</td>
<td>911/ 692-5723</td>
</tr>
<tr>
<td>Tom Martinez</td>
<td>805-684-4591</td>
</tr>
<tr>
<td>Scott Coffman</td>
<td>805-684-4591</td>
</tr>
<tr>
<td>Sansum- Santa Barbara Medical</td>
<td>805-566-5000</td>
</tr>
<tr>
<td>Tom Wagner</td>
<td>805-683-5229</td>
</tr>
<tr>
<td>Fred Lemere</td>
<td>805-684-4138</td>
</tr>
</tbody>
</table>

TABLE C-4
County Agencies
<table>
<thead>
<tr>
<th>Name</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliot Schulman M.D.</td>
<td>805-681-4373</td>
</tr>
<tr>
<td>Rick Merryfield</td>
<td>805-681-4900</td>
</tr>
<tr>
<td>Dorothy Rice</td>
<td>916-323-3577</td>
</tr>
<tr>
<td>Todd Stanley</td>
<td>805-542-4769</td>
</tr>
</tbody>
</table>

TABLE C-5
State Agencies
<table>
<thead>
<tr>
<th>Name</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurt Souza</td>
<td></td>
</tr>
<tr>
<td>If can't get a hold of “DE”, call the CA Warning Center’s 24/7 phone number and ask for the CDHS Duty Officer. A CDHS manager will be contacted and call the water system</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>818-543-4600, 916-657-1134</td>
</tr>
<tr>
<td>OSPR</td>
<td>805-568-1229</td>
</tr>
<tr>
<td>Dorothy Rice</td>
<td>916-323-3577</td>
</tr>
<tr>
<td>Todd Stanley</td>
<td>805-542-4769</td>
</tr>
<tr>
<td>Waring Center</td>
<td>(800) 852-7550 24/7</td>
</tr>
<tr>
<td>(916) 845-8911 24/7</td>
<td></td>
</tr>
<tr>
<td>CDHS District Engineer</td>
<td>Kurt Souza</td>
</tr>
</tbody>
</table>

TABLE C-6
Federal Agencies
<table>
<thead>
<tr>
<th>Name</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randy J Aden (SSRA)</td>
<td>805-642-3995</td>
</tr>
<tr>
<td>Mavin Young</td>
<td>415-972-3561</td>
</tr>
<tr>
<td>202-282-8000</td>
<td></td>
</tr>
<tr>
<td>877-696-6775</td>
<td></td>
</tr>
<tr>
<td>888-246-2675</td>
<td></td>
</tr>
<tr>
<td>805-348-1820 or 888-283-2662</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C7

<table>
<thead>
<tr>
<th>Vendors / Contractors</th>
<th>Name</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Service Provider</td>
<td>Silicon Beach/ Netlojix</td>
<td>805-884-6333</td>
</tr>
<tr>
<td>Computer Equipment Vendor</td>
<td>Lanspeed Systems, Rob Davis</td>
<td>805-682-9981</td>
</tr>
<tr>
<td>Fuel Supplier (backup generator)</td>
<td>McCormix</td>
<td>805-963-9366</td>
</tr>
<tr>
<td>Computer Emergency Response Team</td>
<td>Lanspeed Systems, Rob Davis</td>
<td>805-682-9981</td>
</tr>
</tbody>
</table>

TABLE C8

<table>
<thead>
<tr>
<th>Customer Name</th>
<th>Critical Care Customers</th>
<th>Large Water Users</th>
<th>Primary Contact Information</th>
<th>Secondary Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veterans Building and Clinic</td>
<td>Yes</td>
<td>No</td>
<td>City of Carpinteria</td>
<td>805-684-5405</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SB County Health Department</td>
<td>805-684-8681</td>
</tr>
<tr>
<td>Carpinteria Unified School District</td>
<td>Yes</td>
<td>Yes</td>
<td>Cindy Abbott</td>
<td>805-684-4511</td>
</tr>
<tr>
<td>Cate School</td>
<td>Yes</td>
<td>Yes</td>
<td>Sandy Pierce</td>
<td>805-684-4127</td>
</tr>
<tr>
<td>Ridgefield Mutual Water Co</td>
<td>No</td>
<td>Yes</td>
<td>Dick Van Antwerp</td>
<td>805-969-4966</td>
</tr>
</tbody>
</table>

TABLE C9

<table>
<thead>
<tr>
<th>Firefighting Water Source</th>
<th>Contact Information</th>
<th>Quantity Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montecito Water District</td>
<td>Bob Reoubuk, Montecito Water</td>
<td>Inte\text{r}t\text{e}\text{s} for water direct into our system</td>
</tr>
<tr>
<td>Jamison Lake</td>
<td>Bob Reoubuk, Montecito Water</td>
<td>Lake full</td>
</tr>
<tr>
<td>Lake Casitas</td>
<td>John Johnson, Casitas Water</td>
<td>Lake Full</td>
</tr>
</tbody>
</table>

TABLE C10

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Contact Person: John Andrews</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrowhead Water</td>
<td></td>
<td>805-653-0253</td>
</tr>
</tbody>
</table>

TABLE C11

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Barbara News Press</td>
<td>Camilla Cohee, 805-564-5290</td>
</tr>
<tr>
<td>KEYT</td>
<td>News Room, 805-882-3933</td>
</tr>
<tr>
<td>KRUZ</td>
<td>Pat Cantwell, 805-682-2995</td>
</tr>
<tr>
<td>KBOX (Spanish Speaking radio)</td>
<td>805-879-1460</td>
</tr>
</tbody>
</table>

TABLE C12

<table>
<thead>
<tr>
<th>County Agency</th>
<th>Name</th>
<th>Contact Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Health Department</td>
<td>Primary: Roger E. Heroux, M.P.A</td>
<td>805-681-5102</td>
</tr>
<tr>
<td>County Health Department</td>
<td>1st Alternate: Peggy Langle</td>
<td>805-681-5102</td>
</tr>
<tr>
<td>County Health Department</td>
<td>2nd Alternate:</td>
<td>805-681-5102</td>
</tr>
<tr>
<td>County Health Officer</td>
<td>Primary: Elliot Schulman, MD</td>
<td>805-681-5102</td>
</tr>
<tr>
<td>County Health Officer</td>
<td>1st Alternate: Michele Mickiewicz</td>
<td>805-681-5102</td>
</tr>
<tr>
<td>County Health Officer</td>
<td>2nd Alternate: Jane Overbaugh</td>
<td>805-681-5102</td>
</tr>
</tbody>
</table>
PUBLIC NOTICE

CONSUMER ALERT DURING WATER OUTAGES OR PERIODS OF LOW PRESSURE

1. If you are experiencing water outages or low water pressure, immediately discontinue any non-essential water usage. This includes all outdoor irrigation and car washing. Minimizing usage will reduce the potential for the water system to lose pressure or completely run out of water. Please notify your water system of the outage or low pressure.

2. If the water looks cloudy or dirty, you should not drink it. Upon return of normal water service, you should flush the hot and cold water lines until the water appears clear and the water quality returns to normal.

3. If you are concerned about the water quality or are uncertain of its safety, you may add eight drops of household bleach to one gallon of water and let it sit for 30 minutes or alternatively, if you are able, water can be boiled for one minute at a rolling boil to ensure its safety.

4. Use of home treatment devices does not guarantee the water supply is safe after low pressure situations.

5. Do not be alarmed if you experience higher than normal chlorine concentrations in your water supply since the California Department of Health Services is advising public water utilities to increase chlorine residuals in areas subject to low pressure or outages.

6. The California Department of Health Services has also advised public water systems to increase the bacteriological water quality monitoring of the distribution system in areas subject to low pressure. They may be collecting samples in your area to confirm that the water remains safe. You will be advised if the sampling reveals a water quality problem.

7. Your water system is committed to make certain that an adequate quantity of clean, wholesome, and potable water is delivered to you. We recommend that you discuss the information in this notice with members of your family to ensure that all family members are prepared should water outages or low water pressure occur.
FECHA:

ORDEN DE HERVIR EL AGUA

Hierva su Agua antes de Usarla

Falta de seguir este aviso podría tener resultados estómago o enfermedad intestinal

Debido a la (falta de agua, power outage, inundación, incendio, terremoto, etc.) durante (date, month, etc.), el Departamento de California de Servicios de Salud en conjunción con la Carpinteria y el Condado de (County name) esta aconsejando a todos usuarios del sistema de (water system name) que hiervan el agua de canilla o usen agua embotellada para beber y cocinar como medida de seguridad.

Que debo hacer?

NO BEBA EL AGUA SIN ANTES HERVIRLA. Hierva toda el agua, déjela hervir por un minuto, y déjela reposar antes de usarla, o utilice agua embotellada. Agua hervida o embotellada debe ser usada para beber y para preparar la comida hasta el próximo aviso. Herviendo mata a bacteria y otros organismos en el agua.

Optional alternative to include for prolonged situations where it fits.

- Otro método de purificación del agua para los residentes que no tengan gas o electricidad disponibles es utilizar blanqueador líquido de uso doméstico (Clorox®, Purex®, etc.). Para hacerlo, añada 8 gotas (o 1/4 cucharadita) de blanqueador por galón de agua clara, o 16 gotas (o media cucharadita) por galón de agua turbia, mézclelo bien y déjelo descansar 30 minutos antes de utilizarlo. Este procedimiento de purificación causa que el agua huela y tenga sabor a cloro, lo que indica que ha sido desinfectada de manera adecuada.
- También se puede utilizar tabletas de purificación del agua siguiendo las instrucciones del fabricante.

Hay agua potable disponible en los siguientes sitios: 1301 Santa Ynez Avenue

Traiga un recipiente limpio para el agua (con una capacidad máxima de 5 galones).

Le informaremos cuando las pruebas demuestren que no hay bacterias y que usted ya no necesita hervir su agua. Alcance el problema el [date of expected resolution in Spanish day-month-year].

Para más información, por favor póngase en contacto con: Contacto del sistema de agua: Omar Castro al 805-684-2816 o escribiendo a 1301 Santa Ynez Avenue, Departamento de Salud de California: 805-566-1326, Condado de Santa Barbara (805) 681-5280

Por favor comparte esta información con otros que pueden tomar de esta agua, colocando este aviso en lugares visibles, o remitiéndolo por correo, o entregándolo manualmente. Es de particular interés distribuir este aviso ampliamente si usted lo recibe representando un negocio, un hospital u hogar de ancianos o comunidad residencial.

APPENDIX D – PUBLIC NOTICES AND PRESS RELEASES
LAST UPDATED – 01/27/04

UNSAFE WATER ALERT

Carpinteria Valley Water District water is possibly contaminated with [an unknown substance]

DO NOT DRINK YOUR WATER

Failure to follow this advisory could result in illness.

An unknown substance has been added to the drinking water supplied by the Carpinteria Valley Water District due to a recent [intrusion; break-in] at [one of the wells; our pumping plant; storage tank; distribution system; specific facility]. The California Department of Health Services, Santa Barbara County Health Department, and Carpinteria Valley Water District are advising residents of Carpinteria Valley to NOT USE THE TAP WATER FOR DRINKING AND COOKING, HAND WASHING, OR BATHING UNTIL FURTHER NOTICE.

What should I do?

- **DO NOT DRINK YOUR TAP WATER---USE ONLY BOTTLED WATER.** Bottled water should be used for all drinking (including baby formula and juice), brushing teeth, washing dishes, making ice and food preparation until further notice.
- **DO NOT TRY AND TREAT THE WATER YOURSELF.** Boiling, freezing, filtering, adding chlorine or other disinfectants, or letting water stand will not make the water safe.
- Potable water is available at the following locations: City Hall at 5775 Carpinteria Avenue and the Water District Office at 1301 Santa Ynez Avenue. Please bring a clean water container (5 gallons maximum capacity).

We will inform you when tests show that the water is safe again. We expect to resolve the problem within [estimated time frame].

For more information call:
Water Utility contact: Charles Hamilton, General Manager, 805-684-2816, 1301 Santa Ynez Avenue
California Department of Health Services at: Kurt Souza, District Engineer, 805-566-1326
Local County Health Department: (805) 681-5280

This notice is being sent to you by Carpinteria Valley Water District California Public Water System ID # 421-0001. Date Distributed:

Please share this information with all other people who receive this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand.

LAST UPDATED – 01/27/04
BOIL WATER ORDER
Este informe contiene información muy importante sobre su agua potable.
Tradúzcalo o hable con alguien que lo entienda bien.

BOIL YOUR WATER BEFORE USING
Failure to follow this advisory could result in stomach or intestinal illness.

Due to the recent event [e.g., water outage, power outage, flood, fire, earthquake or other emergency situation], the California Department of Health Services in conjunction with the [County Name] County Health Department, and [Water System name] Water System are advising residents of [City, Town, System] to use boiled tap water or bottled water for drinking and cooking purposes as a safety precaution.

DO NOT DRINK THE WATER WITHOUT BOILING IT FIRST. Bring all water to a boil, let it boil for one (1) minute, and let it cool before using, or use bottled water. Boiled or bottled water should be used for drinking and food preparation until further notice. Boiling kills bacteria and other organisms in the water.

Optional alternative to include for prolonged situations where it fits.
- An alternative method of purification for residents that do not have gas or electricity available is to use fresh liquid household bleach (Clorox®, Purex®, etc.). To do so, add 8 drops (or 1/4 teaspoon) of bleach per gallon of clear water or 16 drops (or 1/2 teaspoon) per gallon of cloudy water, mix thoroughly, and allow to stand for 30 minutes before using. A chlorine-like taste and odor will result from this purification procedure and is an indication that adequate disinfection has taken place.
- Water purification tablets may also be used by following the manufacturer's instructions.
- Optional: Potable water is available at the following locations: [List locations].

Please bring a clean water container (5 gallons maximum capacity).

We will inform you when tests show no bacteria and you no longer need to boil your water. We anticipate resolving the problem within [estimated time frame].

For more information call: Water Utility contact: [Name, title, phone & address of responsible utility representative].
California Department of Health Services – Drinking Water Field Operations Branch - District Office at (805) 566-1326.
Local Environmental Health Jurisdiction: [Santa Barbara County at (805) 681-5102].

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Carpinteria Valley Water District
Press Release

Media Contact: Chapies Hamilton, Carpinteria Valley Water District

Water Contamination Emergency

Insert instructions and alerts here
APPENDIX E
California Statewide Emergency Notification Plan

WATER QUALITY EMERGENCY NOTIFICATION PLAN

Name of Utility: Carpinteria Valley Water District

Physical Location/Address: City of Carpinteria and unincorporated areas of Carpinteria Valley

The following persons have been designated to implement the plan upon notification by the State Department of Health Services that an imminent danger to the health of the water users exists:

<table>
<thead>
<tr>
<th>Water Utility:</th>
<th>Contact Name & Title</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Charles B. Hamilton</td>
<td>Charles@cvwd.net</td>
</tr>
<tr>
<td></td>
<td>Bob Mc Donald</td>
<td>Bob@cvwd.net</td>
</tr>
<tr>
<td></td>
<td>Omar Castro</td>
<td>Omar@cvwd.net</td>
</tr>
</tbody>
</table>

The implementation of the plan will be carried out with the following State and County Health Department personnel:

<table>
<thead>
<tr>
<th>State & County Health Departments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurt Souza, District Engineer</td>
</tr>
<tr>
<td>California Department of Health Services</td>
</tr>
<tr>
<td>(805) 566-1326</td>
</tr>
<tr>
<td>Mir Ali, Engineer</td>
</tr>
<tr>
<td>California Department of Health Services</td>
</tr>
<tr>
<td>(805) 566-1326</td>
</tr>
<tr>
<td>County Environmental Health Department</td>
</tr>
<tr>
<td>Local Primacy Agency</td>
</tr>
<tr>
<td>(805) 681-5102</td>
</tr>
</tbody>
</table>

If the above personnel cannot be reached, contact:
Office of Emergency Services Warning Center (24 hrs) (800) 852-7550 or (916) 845-6911
When reporting a water quality emergency to the Warning Center, please ask for the California Department of Health Services – Drinking Water Program Duty Officer.

NOTIFICATION PLAN

Attach a written description of the method or combination of methods to be used (radio, television, door-to-door, sound truck, etc.) to notify customers in an emergency. For each section of your plan give an estimate of the time required, necessary personnel, estimated coverage, etc. Consideration must be given to special organizations (such as schools), non-English speaking groups, and outlying water users. Ensure that the notification procedures you describe are practical and that you will be able to actually implement them in the event of an emergency. Examples of notification plans are attached for large, medium and small communities.

Report prepared by: ________________________________
Signature and Title ________________________________ Date ________________________________
PLAN I (Medium Community)

During regular working hours District personnel will contact the news media at television station KEYT, KSBY, KCOY to broadcast the necessary warning, local radio stations KUHL, KZBN, KACY, KCSB-FM, KDB, KSMA, KIST, KSYV, KTMS, KRUZ, KTYD and KJEE, and Spanish speaking radio stations KBKO, KSPE, and KOXR will be notified immediately.

The Santa Barbara News Press will be contacted as a follow up.

The District has an answering service for off-hour calls. In the event of an emergency the service will contact the person on call at the District. The on call person carries a cell phone with him at all times.

Warnings will be issued in English and Spanish. Outlying areas of the District such as Beach Club Road, Padero Lane, La Mirada, Ocean Oaks and Shepard Mesa will be notified by phone or door-to-door. Target notification will be completed within one hour of warning.

City of Carpinteria Personnel will be notified and a District representative will be stationed at City hall to handle any questions regarding the emergency. The District offices will remain staffed for the duration of the emergency to answer any questions.

It is anticipated that the time for notification to the television and radio audiences will be very short. The areas served by handbill and sound truck will also be notified within an hour. For notification to be issued in other than normal hours, the same media will be contacted and an announcement will be scheduled for as long as is necessary. A sound truck(s) will be used in the early morning hours to quickly alert the people not listening to their radio or television.

Coordination with COMB and other Cachuma Project contractors will be maintained during both local and regional emergencies.
Written Threat Report Form

INSTRUCTIONS
The purpose of this form is to summarize significant information from a written threat received by a drinking water utility. This form should be completed by the WUERM or an individual designated by incident command to evaluate the written threat. The summary information provided in this form is intended to support the threat evaluation process; however, the completed form is not a substitute for the complete written threat, which may contain additional, significant details.

The written threat itself (e.g., the note, letter, e-mail message, etc.) may be considered evidence and thus should be minimally handled (or not handled at all) and placed into a clean plastic bag to preserve any forensic evidence. Remember, tampering with a drinking water system is a crime under the SDWA Amendments!

SAFETY
A suspicious letter or package could pose a threat in and of itself, so caution should be exercised if such packages are received. The US Postal Service has issued guidance when dealing with suspicious packages (http://www.usps.com/news/2001/press/pr01_1022gila.htm).

THREAT NOTIFICATION
Name of person receiving the written threat: __________________________
Person(s) to whom threat was addressed: __________________________
Date threat received: ____________ Time threat received: ____________
How was the threat received?
☐ US Postal service ☐ Delivery service ☐ Courier
☐ Fax ☐ E-mail ☐ Hand delivered
☐ Other
If mailed, is the return address listed?
☐ Yes ☐ No
If mailed, what is the date and location of the postmark?
__
If delivered, what was the service used (list any tracking numbers)?
__
If Faxed, what is the number of the sending fax?
__
If hand-delivered, who delivered the message?
__

DETAILS OF THREAT
Has the water already been contaminated?
☐ Yes ☐ No

Date and time of contaminant introduction known?
☐ Yes ☐ No ☐ No

Location of contaminant introduction known?
☐ Yes ☐ No
Site Name: __________________________
Type of facility:
☐ Source water ☐ Treatment plant ☐ Pump station
☐ Ground storage tank ☐ Elevated storage tank ☐ Finished water reservoir
☐ Distribution main ☐ Hydrant ☐ Service connection
☐ Other __________________________
Address: __________________________
Additional Site Information: __________________________

Name or type of contaminant known?
☐ Yes ☐ No
Type of contaminant:
☐ Chemical ☐ Biological ☐ Radiological
Specific contaminant name/description: __________________________

Mode of contaminant introduction known?
☐ Yes ☐ No
Method of addition:
☐ Single dose ☐ Over time ☐ Other __________________________
Amount of material:
☐ Other __________________________
Additional Information: __________________________

Motive for contamination known?
☐ Yes ☐ No
☐ Retaliation/revenge ☐ Political cause ☐ Religious doctrine

Describe motivation: __________________________

NOTE CHARACTERISTICS
Perpetrator Information:
Stated name: __________________________
Affiliation: __________________________
Phone number: __________________________
Location/address: __________________________
Condition of paper/enclosure:
☐ Masked personal ☐ Masked confidential ☐ Properly addressed
☐ Neatly typed or written ☐ Clean ☐ Corrected or marked up
☐ Crumpled or wadded up ☐ Soiled/stained ☐ Torn/tattered
☐ Other
If handwritten, does writing look familiar?
☐ Yes ☐ No

How was the note prepared?
☐ Handwritten in print ☐ Handwritten in script ☐ Computer typed
☐ Machine typed ☐ Spliced (e.g., from other typed material)
☐ Other:
If hand-written, what is the e-mail address of sender?
__
If mailed, is the return address listed?
☐ Yes ☐ No
Language:
☐ Clear English ☐ Poor English
☐ Another language: __________________________
☐ Mixed languages: __________________________

Writing Style:
☐ Educated ☐ Proper grammar ☐ Logical
☐ Uneducated ☐ Poor grammar/spelling ☐ Incoherent
☐ Use of slang ☐ Obscene ☐ Other:

Writing Tone:
☐ Clear ☐ Direct ☐ Sincere
☐ Condescending ☐ Accusatory ☐ Angry
☐ Agitated ☐ Nervous ☐ Obscene
☐ Other:

SIGNOFF
Name of individual who received the threat:
Print name __________________________
Signature __________________________ Date/Time: __________________________
Name of person completing form (if different from written threat recipient):
Print name __________________________
Signature __________________________ Date/Time: __________________________

Source: EPA Response Protocol Toolbox Module 2, Section 8.6 – Interim Final December 2003
IT Incident Response and Reporting Checklist

1. What is the nature of the emergency? (Check all that apply)
 - Denial of Service attack
 - Unauthorized electronic monitoring
 - Network intrusion
 - Insider attack
 - Probe/scan
 - Malicious code (virus, Trojan horse, worm)
 - Website defacement
 - Other (explain)

2. Is there just one, or more than one, incident involved simultaneously?

3. Is this a single or multi-site incident?

4. What is the extent of penetration / infection?

5. Estimate the duration of attack

6. What is the entry point of the incident (network, the phone line, etc)?

7. What resources will be required to deal with this incident? (A Computer Emergency Response Team with a forensic expert might be needed immediately to analyze a major incident versus simply disconnecting the compromised equipment from the Internet for later analysis)

8. What is the source of the attack?

9. What is the target of the attack?

10. Impact of attack

11. Has there been a loss or compromise of business data?

12. What type of data has already been compromised or is at risk?

13. How critical is this data?

14. Estimate system downtime

15. Document damage to systems

16. Estimate financial loss

17. Has there been damage to the integrity or delivery of water or services?

18. Describe

19. Other utility systems affected

20. Severity of attack (include financial loss)

21. Did the attacker gain root, administrative or system access?

22. How was the incident detected?
 - Intrusion detection system or audit logs
 - External complaint
 - User report
 - Other

23. What are the known symptoms?

24. What utility areas are affected?

25. Other utility systems affected

26. What systems are affected?

27. Are the backups of the affected systems available (provide all of the information regarding online, onsite, or offline backups)?

28. What is the source of the attack?

29. What is the target of the attack?

30. Impact of attack

31. Has there been a loss or compromise of business data?

32. What type of data has already been compromised or is at risk?

See www.cert.org/tech_tips/intruder_detection_checklist.html for more information on detecting an intruder.

Phone Threat Report Form

INSTRUCTIONS
This form is intended to be used by utility staff that regularly answer phone calls from the public (e.g., call center operators). The purpose of this form is to help these staff capture as much information from a threatening phone call while the caller is on the line. It is important that the operator keep the caller on the line as long as possible in order to collect additional information. Since this form will be used during the call, it is important that operators become familiar with the content of the form. The sections of the form are organized with the information that should be collected during the call at the front of the form (i.e., Basic Call Information and Details of Threat) and information that can be completed immediately following the call at the end of the form (i.e., the description of the caller). The information collected on this form will be critical to the threat evaluation process.

Remember, tampering with a drinking water system is a crime under the SDWA Amendments.

THREAT NOTIFICATION

Name of person receiving the call:

Date phone call received: ____________________________

Time phone call ended: ____________________________

Duration of phone call: ____________________________

Originating number: ____________________________

Originating name: ____________________________

If the number/name is not displayed on the caller ID, press *57 (or call trace) at the end of the call and inform law enforcement that the phone company may have trace information.

Is the connection clear? __Yes__ __No__

Could call be from a wireless phone? __Yes__ __No__

DETAILS OF THREAT

Has the water already been contaminated? __Yes__ __No__

Date and time of contaminant introduction known? __Yes__ __No__

Location of contaminant introduction known? __Yes__ __No__

Contaminant Type:

Source water __ ☐__ Treatment plant __ ☐__ Pump station __ ☐__

Ground storage tank __ ☐__ Elevated storage tank __ ☐__ Finished water reservoir __ ☐__

Distribution main __ ☐__ Hydrant __ ☐__ Service connection __ ☐__

Other __ ☐__

Additional Site Information:

Address:

Name or type of contaminant known? __Yes__ __No__

Type of contaminant:

Chemical __ ☐__ Biological __ ☐__ Radiological __ ☐__

Specific contaminant name/description:

Mode of contaminant introduction known? __Yes__ __No__

Method of addition:

Single dose __ ☐__ Over time __ ☐__ Other __ ☐__

Amount of material:

Additional information:

Motive for contamination known? __Yes__ __No__

Retaliation/revenge __ ☐__ Political cause __ ☐__ Religious doctrine __ ☐__

Other __ ☐__

Describe motivation:

* Adapted from EPA Response Protocol Toolbox: Planning for and Responding to Drinking Water Contamination Threats and Incidents Module 3: Site Characterization and Sampling Guide Section 3.6.

Maintaining Crime Scene Integrity*

Security breaches and suspicious activity need to be evaluated to determine if the actions are a result of “normal” activity, such as a construction crew working in the area, or the result of activity that could result in an intentional threat to the safety or security of the facility and its operations.

- As soon as you recognize that the threat is/was intentional and particularly if the actions of the threatening individuals are suspected to have been successful, you must notify facility management ([Security Director]/[General manager]).
- The ([SD]/[GM]) should immediately notify the local law enforcement agency responsible for criminal investigation at the facility as soon as they have verified a credible threat.
- No personnel from CVWD facility should enter the area where any possible criminal activity might have occurred so as not to disturb the area. All signs of inappropriate entrance to the facility and any physical activity of the suspects must be available for evaluation by law enforcement without any disturbance.
- CVWD facility staff and/or law enforcement may collect water samples prior to the collection of physical evidence.
- CVWD facility staff should collect samples outside of the boundaries of the suspected crime scene, if possible, to avoid concerns about the integrity of the crime scene.
- The CVWD facility [GM] should pre-designate a qualified laboratory that can assist in analysis, if the sample is suspected to contain water that has been intentionally contaminated, to insure chain of evidence custody. Law enforcement may require the collection of an additional sample set to be analyzed by their designated lab.
- CVWD facility staff should be aware of possible physical evidence of contamination that might include discarded PPE, equipment (such as pumps and hoses), or containers with residual material. Special care should be taken by facility personnel to avoid moving or disturbing any potential physical evidence.
- CVWD facility staff should notify [SD]/[GM] of any obvious physical evidence of contamination.
- CVWD facility staff should not handle any physical evidence except at the direction of the appropriate law enforcement agency.
- Any photographs or videos taken by CVWD facility staff should be reported to law enforcement for proper handling to ensure integrity of the evidence.

The CVWD [SD]/[GM] should clearly designate the area of suspected criminal activity in order to assure that facility personnel do not inadvertently enter the area and disturb evidence.

The CVWD [SD]/[GM] can instruct security personnel to stand by and/or lock door/gates, and/or string tape or rope to restrict entrance, as appropriate.

The [SD]/[GM] should balance the needs of both the public health concerns and the concerns of possible criminal activity in their decisions to protect the crime scene.

* Adapted from EPA Response Protocol Toolbox: Planning for and Responding to Drinking Water Contamination Threats and Incidents Module 3: Site Characterization and Sampling Guide Section 3.6.
Caller Information

Basic Information:
- **Stated name:**
- **Affiliation:**
- **Phone number:**
- **Location/address:**

Caller's Voice:
- **Did the voice sound disguised or altered?**
 - Yes
 - No
- **Did the call sound like a recording?**
 - Yes
 - No
- **Did the voice sound?**
 - Male
 - Female
- **Did the voice sound familiar?**
 - Yes
 - No
 - **If 'Yes,' who did it sound like?**
- **Did the caller have an accent?**
 - Yes
 - No
 - **If 'Yes,' what nationality?**

How did the caller sound or speak?
- **Educated**
- **Well spoken**
- **Illiterate**
- **Irrational**
- **Obscene**
- **Incoherent**
- **Reading a script**
- **Other**

What was the caller's tone of voice?
- **Calm**
- **Angry**
- **Lisping**
- **Stuttering/broken**
- **Excited**
- **Nervous**
- **Sincere**
- **Insincere**
- **Slow**
- **Rapid**
- **Normal**
- **Slurred**
- **Soft**
- **Loud**
- **Nasal**
- **Clearing throat**
- **Laughing**
- **Crying**
- **Clear**
- **Deep**
- **High**
- **Raspy**
- **Cracking**
- **Other**

Were there background noises coming from the caller's end?
- **Silence**
- **Voices**
- **Children**
- **Animals**
- **Factory sounds**
- **Office sounds**
- **Music**
- **Traffic/street sounds**
- **Airplanes**
- **Trains**
- **Ships or large boats**
- **Other**

Public Health Information Report Form Instructions

The purpose of this form is to summarize significant information about a public health episode that could be linked to contaminated water. This form should be completed by the WUEM or an individual designated by incident command. The information compiled in this form is intended to support the threat evaluation process.

PUBLIC HEALTH NOTIFICATION

- **Date and Time of notification:**
- **Name of person who received the notification:**
- **Contact information for individual providing the notification:**
 - **Full Name:**
 - **Title:**
 - **Organization:**
 - **Address:**
 - **Day-time phone:**
 - **Evening phone:**
 - **Fax Number:**
 - **E-mail address:**

Why is this person contacting the drinking water utility?

Has the state or local public health agency been notified?
- **Yes**
- **No**
 - **If 'No,' the appropriate public health official should be immediately notified.**

DESCRIPTION OF PUBLIC HEALTH EPISODE

- **Nature of public health episode:**
 - **Unusual disease (mild)**
 - **Unusual disease (severe)**
 - **Death**
 - **Other:**

Symptoms:
- **Diarrhea**
- **Vomiting/nausea**
- **Flu-like symptoms**
- **Fever**
- **Headache**
- **Other:**

Causative Agent:
- **Known**
- **Suspected**
- **Unknown**

Source: EPA Response Protocol Toolbox Module 2, Section 8.5 – Interim Final December 2003
Security Incident Report Form

INSTRUCTIONS

The purpose of this form is to help organize information about a security incident, typically a security breach, which may be related to a water contamination threat. The individual who discovered the security incident, such as a security supervisor, the WUERM, or another designated individual may complete this form. This form is intended to summarize information about a security breach that may be relevant to the threat evaluation process. This form should be completed for each location where a security incident was discovered.

DISCOVERY OF SECURITY INCIDENT

Date/Time security incident discovered: ____________________________

Name of person who discovered security incident: ____________________________

Mode of discovery:
- Alarm (building)
- Alarm (gate/fence)
- Alarm (access hatch)
- Video surveillance
- Utility staff discovery
- Citizen discovery
- Suspect confession
- Law enforcement discovery
- Other__

Did anyone observe the security incident as it occurred? □ Yes □ No

If "Yes", complete the "Witness Account Report Form"

SITE DESCRIPTION

Site Name: ____________________________

Type of facility:
- Source water
- Treatment plant
- Pump station
- Ground storage tank
- Elevated storage tank
- Finished water reservoir
- Distribution main
- Hydrant
- Service connection
- Other__

Address: ____________________________

Additional Site Information: ____________________________

BACKGROUND INFORMATION

Have the following "normal activities" been investigated as potential causes of the security incident?
- Alarms with known and harmless causes
- Utility staff inspections
- Routine water quality sampling
- Construction or maintenance
- Contractor activity
- Other__

Was this site recently visited prior to the security incident? □ Yes □ No

If "Yes", provide additional detail below

Date and time of previous visit: ____________________________

Name of individual who visited the site: ____________________________

Additional Information: ____________________________

Has this location been the site of previous security incidents? □ Yes □ No

If "Yes", provide additional detail below

Date and time of most recent security incident: ____________________________

Description of incident: ____________________________

Additional Information: ____________________________

SIGNOFF

Name of person completing form: ____________________________

Print name: ____________________________ Date/Time: ____________________________

Source: EPA Response Protocol Toolbox Module 2, Section 8.8 – Interim Final December 2003
SECURITY INCIDENT DETAILS

Was there an alarm(s) associated with the security incident? □ Yes □ No
If "Yes," provide additional detail below:
Date and time of alarm(s):
Describe alarm(s):

Are there sequential alarms (e.g., alarm on a gate and a hatch)? □ Yes □ No
If "Yes," provide additional detail below:
Date and time of sequential alarms:
Describe sequential alarms:

Is video surveillance available from the site of the security incident? □ Yes □ No
If "Yes," provide additional detail below:
Date and time of video surveillance:
Describe surveillance:

Unusual equipment found at the site and time of discovery of the security incident:
□ Discarded PPE (e.g., gloves, masks)
□ Empty containers (e.g., bottles, drums)
□ Tools (e.g., wrenches, bolt cutters)
□ Lab equipment (e.g., beakers, tubing)
□ Pumps or hoses
□ None
□ Other
Describe equipment:

Unusual vehicles found at the site and time of discovery of the security incident:
□ Car/sedan
□ SUV
□ Pickup truck
□ Flatbed truck
□ Construction vehicle
□ None
□ Other
Describe vehicles (including make/model/year/color, license plate #, and logos or markings):

Signs of tampering at the site and time of discovery of the security incident:
□ Cut locks/fences
□ Open/damaged gates, doors, or windows
□ Open/damaged access hatches
□ Facility in disarray
□ Missing/damaged equipment
□ None
□ Other
Are there signs of sequential intrusion (e.g., locks removed from a gate and hatch)? □ Yes □ No
Describe signs of tampering:

Signs of hazard at the site and time of discovery of the security incident:
□ Unexplained or unusual odors
□ Unexplained dead or stressed vegetation
□ Unexplained liquids
□ Unexplained clouds or vapors
□ None
□ Other
Describe signs of hazard:

SIGNOFF
Name of person responsible for documenting the security incident:
Print name
Signature
Date/Time:

Source: EPA Response Protocol Toolbox Module 2, Section 8.3 – Interim Final December 2003

SUSPECT DESCRIPTION FORM

GENERAL APPEARANCE

Gender: □ Male □ Female
Race: □ White □ Black □ Middle Eastern □ Hispanic □ Asian □ Native American □ Other _______________________
Hair: □ Color □ Style □ Texture □ Sideburns
Eyes: □ Color □ Shape □ Glasses (type)
Physical Characteristics: □ Age □ Height □ Weight □ Build
Distinguishing Marks (describe):
□ Scars □ Tattoos □ Gang Insignia □ Other:
Left Handed / Right Handed

CLOTHING

Color/Type: □ Layered Shirts/Blouse □ Cap/Hat □ Coat/Jacket □ Pants □ Shoes □ Stockings □ Gloves □ Jewelry

Other: Beg/Backpack □ Purse/Bracecase
APPENDIX F – INCIDENT REPORTS AND FORMS

SUSPECT Demeanor
- Apologetic
- Calm
- Blunt
- Aggressive
- Angry
- Threatening
- Nervous
- Confused

FACIAL CHARACTERISTICS
- Skin:
 - Color
 - Texture

 Describe shape of:
 - Mouth
 - Lips
 - Ears
 - Cheeks (full or sunken)
 - Nose
 - Neck
 - Eyes
 - Eyebrows

 Presence of:
 - Adam’s Apple
 - Chin dimples
 - Wrinkles

 Hair:
 - Mustache
 - Beard
 - Other

 Describe any:
 - Facial piercing
 - Ear piercing

WEAPON (describe if any)
- Handgun
- Long gun
- Knife

VEHICLE
- Color
- Make
- Model
- Body Style
- Damage / Rust
- Antenna
- Bumper Sticker
- Wheel Covers

License Number ____________________________

DISTINGUISHING TRAITS
- Speech
- Accent
- Gait / Limp

BOMB THREAT CHECKLIST

Be Calm and Courteous
Give a co-worker a signal to “listen in”

Date: ___________________
Time call started: ___________________
Time call ended: ___________________

Check call display for phone number (if available)

EXACT WORDING OF BOMB THREAT:

What can you tell me?

When is the bomb going to explode?

What kind of bomb is it?

Where is the bomb right now?

What does the bomb look like?

What will cause the bomb to explode?

Did you place the bomb?

Why?

What is your name?

REMARKS:

CALLER’S VOICE
- Male
- Female
- Old (Age?): __________
- Young (Age?): _______

- Calm
- Excited
- Soft
- Loud

- Angry
- Cracking Voice

- Laughter
- Crying

- Normal
- Disguised

- High pitched
- Deep
Inform the caller that the building is occupied and the detonation of a bomb could result in death or serious injury to many innocent people.

BOMB THREAT LANGUAGE
- Well Spoken
- Incoherent
- Foul
- Irrational
- Taped
- Deliberate
- Abusive
- Righteous
- Message read by threat maker

FAMILIARITY WITH FACILITY
- Much
- Some
- None

BACKGROUND SOUNDS
- Street
- Party Sounds
- Office Noises
- Train
- Voices
- Airplane
- PA System
- Animals
- Local Music
- Static on Line
- Long Distance
- Motors
- Bells
- Whistles
- Factory Machinery
- Crockery
- Household Sounds
- Bedlam
- Chanting
- Other
Threat Evaluation Worksheet

INSTRUCTIONS
The purpose of this worksheet is to help organize information about a contamination threat warning that would be used during the Threat Evaluation Process. The individual responsible for conducting the Threat Evaluation (e.g., the WUERM) should complete this worksheet. The worksheet is generic to accommodate information from different types of threat warnings; thus, there will likely be information that is unavailable or not immediately available. Other forms in the Appendices are provided to augment the information in this worksheet.

THREAT WARNING INFORMATION

Date/Time threat warning discovered:

Name of person who discovered threat warning:

Type of threat warning:

- ☐ Security breach
- ☐ Witness account
- ☐ Phone threat
- ☐ Written threat
- ☐ Law enforcement
- ☐ Unusual water quality
- ☐ News media
- ☐ Consumer complaints
- ☐ Public health notification

Other:

Identity of the contaminant:

- ☐ Known
- ☐ Suspected
- ☐ Unknown

If known or suspected, provide additional detail below:

Describe:

Time of contamination:

- ☐ Known
- ☐ Estimated
- ☐ Unknown

If known or estimated, provide additional detail below:

Date and time of contamination:

Additional Information:

Mode of contamination:

- ☐ Known
- ☐ Suspected
- ☐ Unknown

If known or suspected, provide additional detail below:

Method of addition:

- ☐ Single dose
- ☐ Over time
- ☐ Other

Amount of material:

Additional Information:

Site of contamination:

- ☐ Known
- ☐ Suspected
- ☐ Unknown

If known or suspected, provide additional detail below:

Number of sites:

Provide the following information for each site.

Site #1

Site Name:

Type of facility:

- ☐ Source water
- ☐ Treatment plant
- ☐ Pump station
- ☐ Ground storage tank
- ☐ Elevated storage tank
- ☐ Finished water reservoir
- ☐ Distribution main
- ☐ Hydrant
- ☐ Service connection

Other:

Address:

Additional Site Information:

Site #2

Site Name:

Type of facility:

- ☐ Source water
- ☐ Treatment plant
- ☐ Pump station
- ☐ Ground storage tank
- ☐ Elevated storage tank
- ☐ Finished water reservoir
- ☐ Distribution main
- ☐ Hydrant
- ☐ Service connection

Other:

Address:

Additional Site Information:

ADDITIONAL INFORMATION

Has there been a breach of security at the suspected site?

- ☐ Yes
- ☐ No

Are there any witness accounts of the suspected incident?

- ☐ Yes
- ☐ No

If "Yes", review the completed Witness Account Report

Was there a written threat received?

- ☐ Yes
- ☐ No

If "Yes", review the completed Written Threat Report

Are there unusual water quality data or consumer complaints?

- ☐ Yes
- ☐ No

If "Yes", review the completed Water Quality/Consumer Complaint Report

Is there a Site Characterization Report available?

- ☐ Yes
- ☐ No

If "Yes", review the completed Site Characterization Report

Are results of sample analysis available?

- ☐ Yes
- ☐ No

If "Yes", review the analytical results report, including appropriate QA/QC data

Is a Contaminant Identification Report available?

- ☐ Yes
- ☐ No

If "Yes", review the completed Sample Analysis Report

Is there relevant information available from external sources?

- ☐ Yes
- ☐ No

Check all that apply:

- ☐ Local law enforcement
- ☐ FBI
- ☐ DW primacy agency
- ☐ Public health agency
- ☐ Hospitals / 911 call centers
- ☐ US EPA / Water ISAC
- ☐ Homeland security alerts
- ☐ Neighboring utilities

Other:

Summary of key information from external sources (provide detail in attachments as necessary):

Site of contamination:

Type of facility:

- ☐ Source water
- ☐ Treatment plant
- ☐ Pump station
- ☐ Ground storage tank
- ☐ Elevated storage tank
- ☐ Finished water reservoir
- ☐ Distribution main
- ☐ Hydrant
- ☐ Service connection

Other:

Address:

Additional Site Information:

THREAT EVALUATION

Has normal activity been investigated as the cause of the threat warning?

- ☐ Yes
- ☐ No

Normal activities to consider:

- ☐ Utility staff inspections
- ☐ Routine water quality sampling
- ☐ Construction or maintenance
- ☐ Contractor activity
- ☐ Operational changes
- ☐ Water quality changes with a known cause

Is the threat possible?

- ☐ Yes
- ☐ No

Summarize the basis for this determination:

Additional Site Information:
APPENDIX F – INCIDENT REPORTS AND FORMS

CVWD ERP 07/27/2007 F-19

Response to a 'possible' threat:
 □ None □ Site characterization □ Isolation/containment
 □ Increased monitoring/security □ Other

Is the threat 'credible'?
 □ Yes □ No

Summarize the basis for this determination:

Response to a 'credible' threat:
 □ Sample analysis □ Site characterization □ Isolation/containment
 □ Partial EOC activation □ Public notification □ Provide alternate water supply
 □ Other

Has a contamination incident been confirmed?
 □ Yes □ No

Summarize the basis for this determination:

Response to a confirmed incident:
 □ Sample analysis □ Site characterization □ Isolation/containment
 □ Full EOC activation □ Public notification □ Provide alternate water supply
 □ Initiate remediation and recovery
 □ Other

How do other organizations characterize the threat?

<table>
<thead>
<tr>
<th>Organization</th>
<th>Evaluation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Law Enforcement</td>
<td>Possible</td>
<td>Credible</td>
</tr>
<tr>
<td>Public Health Agency</td>
<td>Possible</td>
<td>Credible</td>
</tr>
<tr>
<td>Drinking Water Primacy Agency</td>
<td>Possible</td>
<td>Credible</td>
</tr>
<tr>
<td>Other</td>
<td>Possible</td>
<td>Credible</td>
</tr>
<tr>
<td>Other</td>
<td>Possible</td>
<td>Credible</td>
</tr>
</tbody>
</table>

SIGNOFF

Name of person responsible for threat evaluation:
Print name ___________________________ Date/Time: ______
Signature ____________________________

Source: EPA Response Protocol Toolbox Module 2, Section 8.2 – Interim Final December 2003

Water Quality/Consumer Complaint Report Form

INSTRUCTIONS - This form is provided to guide the individual responsible for evaluating unusual water quality data or consumer complaints. It is designed to prompt the analyst to consider various factors or information when evaluating the unusual data. The actual data used in this analysis should be compiled separately and appended to this form. The form can be used to support the threat evaluation due to a threat warning from unusual water quality or consumer complaints, or another type of threat warning in which water quality data or consumer complaints are used to support the evaluation. Note that in this form, water quality refers to both specific water quality parameters and the general aesthetic characteristics of the water that might result in consumer complaints.

Threat warning is based on:
 □ Water quality □ Consumer complaints □ Other

What is the water quality parameter or complaint under consideration?

Are unusual consumer complaints corroborated by unusual water quality data?

Is the unusual water quality indicative of a particular contaminant of concern? For example, is the color, order, or taste associated with a particular contaminant?

What is considered to be 'normal' water quality (i.e., what is the baseline water quality data or level of consumer complaints)?

What is reliability of the method or instrumentation used for the water quality analysis?

Are standards and reagents OK?

Is the method/instrument functioning properly?

Based on recent data, does the unusual water quality appear to be part of a gradual trend (i.e., occurring over several days or longer)?

Are the unusual water quality observations sporadic over a wide area, or are they clustered in a particular area?

If the unusual condition isolated to a specific area:

Is this area being supplied by a particular plant or source water?

Have there been any operational changes at the plant or in the affected area of the system?

Has there been any flushing or distribution system maintenance in the affected area?

Has there been any repair or construction in the area that could impact water quality?

SIGNOFF

Name of person completing form:
Print name ___________________________ Date/Time: ______
Signature ____________________________

Source: EPA Response Protocol Toolbox Module 2, Section 8.7 – Interim Final December 2003
Witness Account Report Form

INSTRUCTIONS

The purpose of this form is to document the observations of a witness to activities that might be considered an incident warning. The individual interviewing the witness, or potentially the witness, should complete this form. This may be the WUERM or an individual designated by incident command to perform the interview. If law enforcement is conducting the interview (which may often be the case), then this form may serve as a prompt for "utility relevant information" that should be pursued during the interview. This form is intended to consolidate the details of the witness account that may be relevant to the threat evaluation process. This form should be completed for each witness that is interviewed.

BASIC INFORMATION

- **Date/Time of interview:**
- **Name of person interviewing the witness:**
- **Witness contact information**
 - **Full Name:**
 - **Address:**
 - **Day-time phone:**
 - **Evening phone:**
 - **E-mail address:**
- **Reason the witness was in the vicinity of the suspicious activity:**

WITNESS ACCOUNT

- **Date/Time of activity:**
- **Location of activity:**
 - **Site Name:**
 - **Type of facility**
 - Source water
 - Treatment plant
 - Pump station
 - Ground storage tank
 - Elevated storage tank
 - Finished water reservoir
 - Distribution main
 - Hydrant
 - Service connection
 - Other
 - **Address:**
 - **Additional Site Information:**
- **Type of activity**
 - Trespassing
 - Vandalism
 - Breaking and entering
 - Theft
 - Tampering
 - Surveillance
 - Other
 - **Additional description of the activity:**

Description of suspects

- **Were suspects present at the site?**
- **How many suspects were present?**
- **Describe each suspect’s appearance:**
 - **Suspect #**
 - **Sex**
 - **Race**
 - **Hair color**
 - **Clothing**
 - **Voice**

Equipment at the site

- **Was any unusual equipment present at the site?**
- **Explosive or incendiary devices**
- **Firearms**
- **PPE (e.g., gloves, masks)**
- **Containers (e.g., bottles, drums)**
- **Tools (e.g., wrenches, bolt cutters)**
- **Hardware (e.g., valves, pipe, hoses)**
- **Lab equipment (e.g., beakers, tubing)**
- **Pumps and related equipment**
- **Other**
 - **Describe the equipment and how it was being used by the suspects (if at all):**

Unusual conditions at the site

- **Were there any unusual conditions at the site?**
- **Explosions or fires**
- **Fogs or vapors**
- **Unusual odors**
- **Dead or stressed vegetation**
- **Dead animals**
- **Unusual noises**
- **Other**
 - **Describe the site conditions:**

Additional observations

- **Describe any additional details from the witness account:**

SIGNOFF

- **Name of interviewer:**
- **Signature:**
- **Date/Time:**
- **Name of witness:**
- **Signature:**
- **Date/Time:**

Source: EPA Response Protocol Toolbox Module 2, Section 8.4 – Interim Final December 2003
Damage Assessment Form

<table>
<thead>
<tr>
<th>INITIAL DAMAGE ASSESSMENT</th>
<th>DATE</th>
<th>PAGE OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE ID</td>
<td>LOCATION (Use map location, address, etc.)</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION OF DAMAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td>COST ESTIMATE</td>
<td></td>
</tr>
<tr>
<td>SITE ID</td>
<td>LOCATION (Use map location, address, etc.)</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION OF DAMAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td>COST ESTIMATE</td>
<td></td>
</tr>
<tr>
<td>SITE ID</td>
<td>LOCATION (Use map location, address, etc.)</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION OF DAMAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td>COST ESTIMATE</td>
<td></td>
</tr>
<tr>
<td>SITE ID</td>
<td>LOCATION (Use map location, address, etc.)</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION OF DAMAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td>COST ESTIMATE</td>
<td></td>
</tr>
</tbody>
</table>

Appendix G

ERP Certification Form
CERTIFICATION OF COMPLETION
OF AN EMERGENCY RESPONSE PLAN

Public Water System ID number: 421-0001
System Name: Carpinteria Valley Water District
City where system is located: Carpinteria, CA
County: Santa Barbara
State: California

Printed Name of Person Authorized to Sign this Certification on Behalf of the System: Robert Mc Donald
Title: District Engineer
Address: 1301 Santa Ynez
City: Carpinteria
State and ZIP Code: CA, 93013
Phone: 805-684-2816 Fax: 805-684-3170 Email: Bob@cvwd.net

I certify to the Administrator of the U.S. Environmental Protection Agency that this community water system has completed an Emergency Response Plan that complies with Section 1433(b) of the Safe Drinking Water Act as amended by the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 (Public Law 107-188, Title IV — Drinking Water Security and Safety). I further certify that this document was prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information (Safe Drinking Water Act (42 U.S.C. 300f et seq.)).

The emergency response plan that this community water system completed incorporates the results of the vulnerability assessment completed for the system and includes “plans, procedures, and identification of equipment that can be implemented or utilized in the event of a terrorist or other intentional attack” on this community water system. The emergency response plan also includes “actions, procedures, and identification of equipment which can obviate or significantly lessen the impact of terrorist attacks or other intentional actions on the public health and the safety and supply of drinking water provided to communities and individuals.”

This CWS has coordinated, to the extent possible, with existing Local Emergency Planning Committees established under the Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11001 et seq) when preparing this emergency response plan.

Signed: __________________________ Date: __________________________

Primary contact person that EPA can call if there are questions about this Certification:
Name: __________________________
Address (if different than that of the Authorized Representative):

Phone: __________________________ Fax: __________________________ Email: __________________________
Alternate Contact Person:
Name: __________________________
Address (if different than that of the Authorized Representative):

Source: EPA Small-Medium ERP Guidance 2004
Appendix J

BMP Reports for CUWCC
BMP 1.1 Operation Practices

36 Carpinteria Valley Water District

1. **Conservation Coordinator provided with necessary resources to implement BMPs?**
 - **Name:** Robert McDonald
 - **Title:** District Engineer
 - **Email:** bob@cvwd.net

2. **Water Waste Prevention Documents**

<table>
<thead>
<tr>
<th>WW Document Name</th>
<th>WWP File Name</th>
<th>WW Prevention URL</th>
<th>WW Prevention Ordinance Terms Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A Describe the ordinances or terms of service adopted by your agency to meet the water waste prevention requirements of this BMP.</td>
<td>Copy1_of_wrongful_use_waste_of_water.pdf</td>
<td></td>
<td>Prohibits wrongful use and/or waste of water.</td>
</tr>
<tr>
<td>Option B Describe any water waste prevention ordinances or requirements adopted by your local jurisdiction or regulatory agencies within your service area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option C Describe any documentation of support for legislation or regulations that prohibit water waste.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option D Describe your agency efforts to cooperate with other entities in the adoption or enforcement of local requirements consistent with this BMP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option E Describe your agency support positions with respect to adoption of legislation or regulations that are consistent with this BMP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option F Describe your agency efforts to support local ordinances that establish permits requirements for water efficient design in new development.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>At Least As effective As</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemption</td>
<td>No</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
</tbody>
</table>
BMP 1.1 Operation Practices

ON TRACK
BMP 1.2 Water Loss Control

ON TRACK

36 Carpinteria Valley Water District

Completed Standard Water Audit Using AWWA Software? Yes

AWWA File provided to CUWCC? Yes

2013_CVWD_AWWA Water Audit Software v4_1.xls

AWWA Water Audit Validity Score? 83

Complete Training in AWWA Audit Method Yes

Complete Training in Component Analysis Process? Yes

Component Analysis? Yes

Repaired all leaks and breaks to the extent cost effective? Yes

Locate and Repar unreported leaks to the extent cost effective? Yes

Maintain a record keeping system for the repair of reported leaks, including time of report, leak location, type of leaking pipe segment or fitting, and leak running time from report to repair. Yes

Provided 7 Types of Water Loss Control Info

<table>
<thead>
<tr>
<th>Leaks Repairs</th>
<th>Value Real Losses</th>
<th>Value Apparent Losses</th>
<th>Miles Surveyed</th>
<th>Press Reduction</th>
<th>Cost Of Interventions</th>
<th>Water Saved (AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>25677</td>
<td>36930</td>
<td>0</td>
<td>False</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At Least As effective As No

Exemption No

Comments:
BMP 1.3 Metering With Commodity

36 Carpinteria Valley Water District

Numbered Unmetered Accounts No
Metered Accounts billed by volume of use Yes
Number of CII Accounts with Mixed Use Meters 297

Conducted a feasibility study to assess merits of a program to provide incentives to switch mixed-use accounts to dedicated landscape meters? Yes

Feasibility Study provided to CUWCC? Yes
Date: 9/5/2013
Uploaded file name: BMP1_3_Feasibility_Study_090513.xls
Completed a written plan, policy or program to test, repair and replace meters Yes

At Least As effective As No
Exemption No
Comments:
BMP 1.4 Retail Conservation Pricing

36 Carpinteria Valley Water District

Implementation (Water Rate Structure)

<table>
<thead>
<tr>
<th>Customer Class</th>
<th>Water Rate Type</th>
<th>Conserving Rate?</th>
<th>(V) Total Revenue Commodity Charges</th>
<th>(M) Total Revenue Fixed Carges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>2564986.51</td>
<td>1203255.99</td>
</tr>
<tr>
<td>Multi-Family</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>1373031.5</td>
<td>1038663.4</td>
</tr>
<tr>
<td>Commercial</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>868521.57</td>
<td>180480.83</td>
</tr>
<tr>
<td>Industrial</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>212953.33</td>
<td>108101.53</td>
</tr>
<tr>
<td>Institutional</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>268929.2</td>
<td>90424.27</td>
</tr>
<tr>
<td>Dedicated Irrigation</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>160456</td>
<td>48129.12</td>
</tr>
<tr>
<td>Agricultural</td>
<td>Uniform</td>
<td>Yes</td>
<td>1794167.44</td>
<td>787255.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7243045.55</td>
<td>3456311.1</td>
</tr>
</tbody>
</table>

Calculation:

\[
\text{Calculate: } \frac{V}{V + M} \quad 68 \%
\]

Implementation Option:

- Use Annual Revenue As Reported

- [] Use 3 years average instead of most recent year

Canadian Water and Wastewater Association

Upload file:

Agency Provide Sewer Service: No

At Least As effective As

- No

Exemption

- No

Comments:
BMP 2.1 Public Outreach

36 Carpinteria Valley Water District Retail

Does your agency perform Public Outreach programs? Yes

The list of wholesale agencies performing public outreach which can be counted to help the agency comply with the BMP

Santa Barbara County Water Agency

The name of agency, contact name and email address if not CUWCC Group 1 members

Did at least one contact take place during each quarter of the reporting year? No

<table>
<thead>
<tr>
<th>Public Outreach Program List</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>General water conservation information</td>
<td>48</td>
</tr>
<tr>
<td>Flyers and/or brochures (total copies), bill stuffers, messages printed on bill, information packets</td>
<td>24</td>
</tr>
<tr>
<td>Landscape water conservation media campaigns</td>
<td>2</td>
</tr>
<tr>
<td>Website</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
</tr>
</tbody>
</table>

Did at least one contact take place during each quarter of the reporting year? Yes

<table>
<thead>
<tr>
<th>Number Media Contacts</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Advertisings</td>
<td>2</td>
</tr>
<tr>
<td>Newspaper contacts</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

Did at least one website update take place during each quarter of the reporting year? Yes

Public Information Program Annual Budget

<table>
<thead>
<tr>
<th>Annual Budget Category</th>
<th>Annual Budget Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Outreach</td>
<td>3000</td>
</tr>
<tr>
<td>Total Amount:</td>
<td>3000</td>
</tr>
</tbody>
</table>

Description of all other Public Outreach programs

Comments:

At Least As effective As No

Exemption No 0
BMP 2.2 School Education Programs

<table>
<thead>
<tr>
<th>No.</th>
<th>Agency Name</th>
<th>Retail</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Carpinteria Valley Water District</td>
<td>Retail</td>
</tr>
</tbody>
</table>

Does your agency implement School Education programs? Yes

The list of wholesale agencies performing public outreach which can be counted to help the agency comply with the BMP

Santa Barbara County Water Agency

Materials meet state education framework requirements? Yes

Materials downloaded from waterwisesb.org include language arts, math and science standards. Contact Shows That Teach for education framework requirements for the school assemblies.

Materials distributed to K-6? Yes

Student workbooks/worksheets, resource books, board games, hands-on water activities for teachers, and students in grades k-8, focusing on water issues can be downloaded from the regional website, waterwisesb.org.

Materials distributed to 7-12 students? No (Info Only)

Annual budget for school education program: 600.00

Description of all other water supplier education programs

Large group assembly, science fair award, high school video contest

Comments:

At Least As effective As No

Exemption No 0
Carpinteria Valley Water District

Agency: Carpinteria Valley Water District
Date Agency Signed MOU: 5/15/1996

Coverage Option: Flextrack

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th></th>
<th>TRADITIONAL</th>
<th>FLEXTRACK</th>
<th>ACTUAL</th>
<th>TARGET</th>
<th>Prior Activities Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.86</td>
<td>0</td>
<td>1.86</td>
<td>3.06</td>
<td>2.410</td>
</tr>
</tbody>
</table>

Residential Assistance

<table>
<thead>
<tr>
<th>Points of Interest</th>
<th>Single Family Accounts</th>
<th>Single Family Target</th>
<th>Multi Family Units</th>
<th>Multi Family Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number Of Accounts/Units</td>
<td>3123</td>
<td>3167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Participants during Reporting</td>
<td>30</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Leak Detection Surveys or Assistance on Customer Property</td>
<td>30</td>
<td>23.42</td>
<td>26</td>
<td>23.75</td>
</tr>
<tr>
<td>Number of Faucet Aerators Distributed</td>
<td>23</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of WSS Showerheads Distributed</td>
<td>33</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape Water Surveys</td>
<td>25</td>
<td>23.42</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Has agency reached a 75% market saturation for showerheads? No

High Efficiency Clothes Washers

<table>
<thead>
<tr>
<th>Points of Interest</th>
<th>Single Family Accounts</th>
<th>Single Family Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of installations for HECW</td>
<td>5</td>
<td>18.74</td>
</tr>
<tr>
<td>Are financial incentives provided for HECWs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Has agency completed a HECW Market Penetration Study?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Water Sense Specification Toilets

<table>
<thead>
<tr>
<th>Points of Interest</th>
<th>Single Family Target</th>
<th>Multi Family Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit 'On Resale' Ordinance exists</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>75% Market Penetration Achieved</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Points of Interest</th>
<th>Single Family Units</th>
<th>Multi Family Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five year average Resale Rate</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Number Toilets per Household</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Number WSS Toilets Installed</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Target Number of WSS Toilets</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WSS for New Residential Development

<table>
<thead>
<tr>
<th>Points of Interest</th>
<th>Single Family Units</th>
<th>Multi Family Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does an Ordinance Exists Requiring WSS Fixtures and Appliances in new SF and MF residences?</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Number of new SF & MF units built</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
Unique Conservation Measures

Residential Assistance / Landscape Water Survey unique water savings
Measured water savings (AF/YR) 0
Uploaded file name:

High Efficiency Clothes Washers unique water savings
Measured water savings (AF/YR) 0
Uploaded file name:

WaterSense Specification toilets unique water savings
SF Measured water savings (AF/YR) MF Measured water savings (AF/YR)
Uploaded file name:

WaterSense Specification toilets for New Residential development unique water savings
Measured water savings (AF/YR) 0
Uploaded file name:

High bill contact with single-family and multi-family customers
Measured water savings (AF/YR)
Uploaded file name:

Educate residential customers about the behavioral aspects of water conservation
Measured water savings (AF/YR) 0
Uploaded file name:

Notify residential customers of leaks on the customer's side of the meters
Measured water savings (AF/YR) 0
Uploaded file name:

Provide bill or surcharge refunds for customers to repair leaks on the customer's side of the meters
Measured water savings (AF/YR) 0
Uploaded file name:

Provide unique water savings fixtures that are not included in the BMP list above
Measured water savings (AF/YR) 0
Uploaded file name:

Install residence water use monitors
Measured water savings (AF/YR) 0
Uploaded file name:

Participate in programs that provide residences with school water conservation kits
Measured water savings (AF/YR) 0
Uploaded file name:

Implement in automatic meter reading program for residential customers
CUWCC BMP Coverage Report 2013

BMP3 - Residential

ON TRACK

Measured water savings (AF/YR) 0

Uploaded file name:

OTHER Types of Measures

Measured water savings (AF/YR) 0

Uploaded file name:

<table>
<thead>
<tr>
<th>Measures</th>
<th>Target Water Savings (AF):</th>
<th>Actual Water Savings (AF):</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF Leak Detection Surveys</td>
<td>0.52</td>
<td>0.67</td>
</tr>
<tr>
<td>MF Leak Detection Surveys</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>Landscape Water Surveys</td>
<td>0.52</td>
<td>0.56</td>
</tr>
<tr>
<td>SF WSS Toilets Installed</td>
<td>0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>MF WSS Toilets Installed</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>HECW</td>
<td>1.75</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Comments:

Although CVWD had an HET and HECW rebate program during FY2012-13, only 5 customers took advantage of the program.

At Least As Effective As No

Exemption No
CUWCC BMP Coverage Report 2013

BMP4 - Commercial Industrial Institutional

Agency: Carpinteria Valley Water District
Date Agency Signed MOU: 5/15/1996

Coverage Option: Flextrack

CII Baseline Water Use (AF): 685.00
CII Water Use Reduction (AF): 68.5

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th>Water Efficiency Measures</th>
<th>Quantity Installed</th>
<th>Water Savings</th>
<th>Accept Council's default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 High Efficiency Toilets (1.2 GPF or less)</td>
<td>6</td>
<td>0.17</td>
<td>Yes</td>
</tr>
<tr>
<td>2 High Efficiency Urinals (0.5 GPF or less)</td>
<td>2</td>
<td>0.03</td>
<td>Yes</td>
</tr>
<tr>
<td>3 Ultra Low Flow Urinals</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>4 Zero Consumption Urinals</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>5 Commercial High Efficiency Single Load Clothes Washers</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>6 Cooling Tower Conductivity Controllers</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>7 Cooling Tower pH Controllers</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>8 Connectionless Food Steamers</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>9 Medical Equipment Steam Sterilizers</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>10 Water Efficient Ice Machines</td>
<td>1.00</td>
<td>0.69</td>
<td>Yes</td>
</tr>
<tr>
<td>11 Pressurized Water Brooms</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>12 Dry Vacuum Pumps</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Total Water Savings: 0.90

Unique Conservation Measures

Industrial Process Water Use Reduction

Measured water savings (AF/YR)

Uploaded file name:

Commercial Laundry Retrofits

Measured water savings (AF/YR)

Uploaded file name:

Industrial Laundry Retrofits

Measured water savings (AF/YR)

Uploaded file name:

Filter Upgrades (for pools, spas and fountants)
Measured water savings (AF/YR)
Uploaded file name:
Car Wash Reclamation Systems
Measured water savings (AF/YR)
Uploaded file name:
Wet Cleaning
Measured water savings (AF/YR)
Uploaded file name:
Water Audits (to avoid double counting, do not include device/replacement water savings
Measured water savings (AF/YR)
Uploaded file name:
Clean In Place (CIP) Technology (such as bottle sterilization in a beverage processing plant)
Measured water savings (AF/YR)
Uploaded file name:
Waterless Wok
Measured water savings (AF/YR)
Uploaded file name:
Alternative On-site Water Sources
Measured water savings (AF/YR)
Uploaded file name:
Sub-metering
Measured water savings (AF/YR)
Uploaded file name:
High Efficiency Showerheads
Measured water savings (AF/YR)
Uploaded file name:
Faucet Flow Restrictors
Measured water savings (AF/YR)
Uploaded file name:
Water Efficiency Dishwashers
Measured water savings (AF/YR)
Uploaded file name:
Hot Water on Demand
Measured water savings (AF/YR)
Uploaded file name:
Pre-rinse spray Valves of 1.5 gpm (gallons per minute) or less
<table>
<thead>
<tr>
<th>Pre-rinse spray Valves of 1.3 gpm (gallons per minute) or less</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Flush Systems</td>
<td>No</td>
</tr>
<tr>
<td>Other Measures chosen by the Agency</td>
<td>No</td>
</tr>
</tbody>
</table>
CUWCC BMP Coverage Report 2013

BMP5 - Landscape

Agency: Carpinteria Valley Water District
Date Agency Signed MOU: 5/15/1996

Coverage Option: Traditional

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th>TRADITIONAL</th>
<th>FLEXTRACK</th>
<th>ACTUAL</th>
<th>TARGET</th>
<th>PRIOR ACTIVITIES CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.62</td>
<td>0</td>
<td>9.62</td>
<td>4.84</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Accounts with Dedicated Irrigation Meters

a) Number of dedicated irrigation meter accounts
b) Number of dedicated irrigation meter accounts with water budgets
c) Aggregate water use for all dedicated non-recreational landscape accounts with water budgets
d) Aggregate acreage assigned water budgets for dedicated non-recreational landscape accounts with budgets

Aggregate acreage of recreational areas assigned water budgets for dedicated recreational landscape accounts with budgets

Preserved water use records and budgets for customers with dedicated landscape irrigation accounts for at least four years

Unique measured water Savings (AF/YR) in this measure

Uploaded the backup data if there are unique measured water savings?

Technical Assistance

Number of Accounts 20% over-budget
Number of Accounts 20% over-budget offered technical assistance
Number of Accounts 20% over-budget accepting technical assistance

Unique measured water Savings (AF/YR) in technical assistance

Uploaded the backup data if there are unique measured water savings?

2) Commercial / Industrial / Institutional Accounts without Meters or with Mixed-Use Meters

Number of mixed use and un-metered accounts.
Number of irrigation water use surveys offered
Number of irrigation water use surveys accepted

Type: Incentives numbers received by customers:
Type: Rebates numbers received by customers:
Type: No- or low-interest loan offered numbers received by customers:

Annual water savings by customers receiving irrigation water savings surveys and implementing recommendations

Estimated annual water savings by customers receiving surveys and implementing recommendations

Agency: Carpinteria Valley Water District
Date Agency Signed MOU: 5/15/1996

Coverage Option: Traditional

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th>TRADITIONAL</th>
<th>FLEXTRACK</th>
<th>ACTUAL</th>
<th>TARGET</th>
<th>PRIOR ACTIVITIES CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.62</td>
<td>0</td>
<td>9.62</td>
<td>4.84</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Accounts with Dedicated Irrigation Meters

a) Number of dedicated irrigation meter accounts
b) Number of dedicated irrigation meter accounts with water budgets
c) Aggregate water use for all dedicated non-recreational landscape accounts with water budgets
d) Aggregate acreage assigned water budgets for dedicated non-recreational landscape accounts with budgets

Aggregate acreage of recreational areas assigned water budgets for dedicated recreational landscape accounts with budgets

Preserved water use records and budgets for customers with dedicated landscape irrigation accounts for at least four years

Unique measured water Savings (AF/YR) in this measure

Uploaded the backup data if there are unique measured water savings?

Technical Assistance

Number of Accounts 20% over-budget
Number of Accounts 20% over-budget offered technical assistance
Number of Accounts 20% over-budget accepting technical assistance

Unique measured water Savings (AF/YR) in technical assistance

Uploaded the backup data if there are unique measured water savings?

2) Commercial / Industrial / Institutional Accounts without Meters or with Mixed-Use Meters

Number of mixed use and un-metered accounts.
Number of irrigation water use surveys offered
Number of irrigation water use surveys accepted

Type: Incentives numbers received by customers:
Type: Rebates numbers received by customers:
Type: No- or low-interest loan offered numbers received by customers:

Annual water savings by customers receiving irrigation water savings surveys and implementing recommendations

Estimated annual water savings by customers receiving surveys and implementing recommendations

Agency: Carpinteria Valley Water District
Date Agency Signed MOU: 5/15/1996

Coverage Option: Traditional

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th>TRADITIONAL</th>
<th>FLEXTRACK</th>
<th>ACTUAL</th>
<th>TARGET</th>
<th>PRIOR ACTIVITIES CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.62</td>
<td>0</td>
<td>9.62</td>
<td>4.84</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Accounts with Dedicated Irrigation Meters

a) Number of dedicated irrigation meter accounts
b) Number of dedicated irrigation meter accounts with water budgets
c) Aggregate water use for all dedicated non-recreational landscape accounts with water budgets
d) Aggregate acreage assigned water budgets for dedicated non-recreational landscape accounts with budgets

Aggregate acreage of recreational areas assigned water budgets for dedicated recreational landscape accounts with budgets

Preserved water use records and budgets for customers with dedicated landscape irrigation accounts for at least four years

Unique measured water Savings (AF/YR) in this measure

Uploaded the backup data if there are unique measured water savings?

Technical Assistance

Number of Accounts 20% over-budget
Number of Accounts 20% over-budget offered technical assistance
Number of Accounts 20% over-budget accepting technical assistance

Unique measured water Savings (AF/YR) in technical assistance

Uploaded the backup data if there are unique measured water savings?

2) Commercial / Industrial / Institutional Accounts without Meters or with Mixed-Use Meters

Number of mixed use and un-metered accounts.
Number of irrigation water use surveys offered
Number of irrigation water use surveys accepted

Type: Incentives numbers received by customers:
Type: Rebates numbers received by customers:
Type: No- or low-interest loan offered numbers received by customers:

Annual water savings by customers receiving irrigation water savings surveys and implementing recommendations

Estimated annual water savings by customers receiving surveys and implementing recommendations

Agency: Carpinteria Valley Water District
Date Agency Signed MOU: 5/15/1996

Coverage Option: Traditional

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th>TRADITIONAL</th>
<th>FLEXTRACK</th>
<th>ACTUAL</th>
<th>TARGET</th>
<th>PRIOR ACTIVITIES CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.62</td>
<td>0</td>
<td>9.62</td>
<td>4.84</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Accounts with Dedicated Irrigation Meters

a) Number of dedicated irrigation meter accounts
b) Number of dedicated irrigation meter accounts with water budgets
c) Aggregate water use for all dedicated non-recreational landscape accounts with water budgets
d) Aggregate acreage assigned water budgets for dedicated non-recreational landscape accounts with budgets

Aggregate acreage of recreational areas assigned water budgets for dedicated recreational landscape accounts with budgets

Preserved water use records and budgets for customers with dedicated landscape irrigation accounts for at least four years

Unique measured water Savings (AF/YR) in this measure

Uploaded the backup data if there are unique measured water savings?

Technical Assistance

Number of Accounts 20% over-budget
Number of Accounts 20% over-budget offered technical assistance
Number of Accounts 20% over-budget accepting technical assistance

Unique measured water Savings (AF/YR) in technical assistance

Uploaded the backup data if there are unique measured water savings?

2) Commercial / Industrial / Institutional Accounts without Meters or with Mixed-Use Meters

Number of mixed use and un-metered accounts.
Number of irrigation water use surveys offered
Number of irrigation water use surveys accepted

Type: Incentives numbers received by customers:
Type: Rebates numbers received by customers:
Type: No- or low-interest loan offered numbers received by customers:

Annual water savings by customers receiving irrigation water savings surveys and implementing recommendations

Estimated annual water savings by customers receiving surveys and implementing recommendations

Agency: Carpinteria Valley Water District
Date Agency Signed MOU: 5/15/1996

Coverage Option: Traditional

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th>TRADITIONAL</th>
<th>FLEXTRACK</th>
<th>ACTUAL</th>
<th>TARGET</th>
<th>PRIOR ACTIVITIES CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.62</td>
<td>0</td>
<td>9.62</td>
<td>4.84</td>
<td>0</td>
</tr>
</tbody>
</table>
CUWCC BMP Coverage Report 2013

BMP5 - Landscape

ON TRACK

Unique measured water Savings (AF/YR) in this measure

Uploaded the backup data if there are unique measured water savings?
No

Financial Incentives

<table>
<thead>
<tr>
<th>Number Of Incentives</th>
<th>Dollar Value Of Incentives</th>
<th>Incentive Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>962.41</td>
<td>Rebate</td>
</tr>
</tbody>
</table>

Unique measured water Savings (AF/YR) in Financial incentives

Uploaded the backup data if there are unique measured water savings?
No

Unique Conservation Measures

1. Monitor and report on landscape water use

1a. Measure landscapes and develop water budgets for customers with dedicated landscape meters. Provide timely water use reports with comparisons of water use to budget that provide customers the information they need to adjust irrigation schedules.

Uploaded file name:

1b. Measure landscapes and develop water budgets for customers with Mixed Use meters. Provide timely water use reports with comparisons of water use to budget that provide customers the information they need to adjust irrigation schedules.

Uploaded file name:

1c. Establish agency-wide water budget. (Include in Help notes: ETo based water budget in the MWELO changed in 2010 from .8ETo to .7ETo.)

Uploaded file name:

1d. Establish agency-wide, sector-based irrigation goal to reduce water use, based on season.

Uploaded file name:

2. Provide technical landscape resources and training

2a. Upon customer requests, provide landscape irrigation management and landscape design information and resources: provide assistance, answer customer questions, respond to run-off and high-bill calls.

Uploaded file name:

2b. Perform landscape & irrigation audits: including irrigation scheduling, plant information, and landscape area measurement.

Uploaded file name:

2c. Sponsor, co-sponsor, promote, or support landscape workshops, training, presentations and other technical educational events for homeowners and professionals: design, installation, maintenance, water management.

Uploaded file name:

2d. Establish time-of-day irrigation restrictions.

Uploaded file name:

2e. Establish day-of-week irrigation restrictions.

Uploaded file name:
3. Provide incentives

3a. Establish landscape budget-based rates.

Uploaded file name:

3b. Provide incentives for conversions from mixed-use meters to dedicated landscape meters.

Uploaded file name:

3c. Provide incentives for irrigation equipment upgrades that improve distribution uniformity, irrigation efficiency, or scheduling capabilities.

Uploaded file name:

3d. Provide incentives for the reduction of water use over an irrigated area, or reduction in the size of the irrigated area due to replacement of turf or other high water-using plants with low water-using plants, artificial turf, or permeable surfaces.

Uploaded file name:

3e. Provide incentives for conversions from potable to recycled water.

Uploaded file name:

3f. Provide incentives for the use of alternative sources of water in the landscape (i.e. gray water, rainwater, cisterns, etc.)

Uploaded file name:

4. Participate in local and regional planning and regulatory activities

4a. Collaborate with planning agencies at the local and regional level, other water suppliers in the area and stakeholders in response to state or federal requirements such as the State Model Water Efficient Landscape Ordinance and AB 1881. Participate in the development, review, implementation, and enforcement of requirements for new developments. Provide water use data to planning agencies.

4b. Establish or participate in a water conservation advisory committee or other community outreach effort to drive market transformation and exchange information about landscape water conservation with developers, community-based organizations, homeowners associations, residential customers, landscape professionals, educators, other water suppliers in region.

4c. Participate in regional efforts: integrated water resource management, watershed management, NPDES permit agencies, etc.

5. Develop a holistic approach to landscape water use efficiency

5a. Develop and implement a comprehensive landscape water conservation program for all customers. Target marketing efforts to those most likely to result in benefits to both customer and Agency.

Uploaded file name:

6. Other Measures

Other Landscape Measures.

Uploaded file name:

Comments:
CVWD has chosen the Traditional option but has participated activities outlined under the Flex Track reporting criteria.

At Least As Effective As: No
Exemption: No
BMP 1.1 Operation Practices

Carpinteria Valley Water District

1. **Conservation Coordinator provided with necessary resources to implement BMPs?**
 - **Name:** Robert McDonald
 - **Title:** District Engineer
 - **Email:** bob@cvwd.net

2. **Water Waste Prevention Documents**

<table>
<thead>
<tr>
<th>WW Document Name</th>
<th>WWP File Name</th>
<th>WW Prevention URL</th>
<th>WW Prevention Ordinance Terms Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A Describe the ordinances or terms of service adopted by your agency to meet the water waste prevention requirements of this BMP.</td>
<td>Rules_Regs29_Res972.pdf</td>
<td>Rules & Regulations #29, Prohibits Wrongful Use or Waste of Water; Resolution 972, adopted 2/12/2014 declaring a Stage 1 Drought Emergency - outlines prohibited water waste and required water saving actions.</td>
<td></td>
</tr>
<tr>
<td>Option B Describe any water waste prevention ordinances or requirements adopted by your local jurisdiction or regulatory agencies within your service area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option C Describe any documentation of support for legislation or regulations that prohibit water waste.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option D Describe your agency efforts to cooperate with other entities in the adoption or enforcement of local requirements consistent with this BMP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option E Describe your agency support positions with respect to adoption of legislation or regulations that are consistent with this BMP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option F Describe your agency efforts to support local ordinances that establish permits requirements for water efficient design in new development.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At Least As effective As

No

Exemption

No
BMP 1.1 Operation Practices

ON TRACK

Comments:
CUWCC BMP Coverage Report 2014

Foundational Best Management Practices For Urban Water Efficiency

BMP 1.2 Water Loss Control

36 Carpinteria Valley Water District

Completed Standard Water Audit Using AWWA Software? Yes
AWWA File provided to CUWCC? Yes
FY2013-14_AWWA Free Water Audit Software v4_1.xls
AWWA Water Audit Validity Score? 83
Complete Training in AWWA Audit Method Yes
Complete Training in Component Analysis Process? Yes
Component Analysis? Yes
Repaired all leaks and breaks to the extent cost effective? Yes
Locate and Repair unreported leaks to the extent cost effective? Yes

Maintain a record keeping system for the repair of reported leaks, including time of report, leak location, type of leaking pipe segment or fitting, and leak running time from report to repair. Yes

Provided 7 Types of Water Loss Control Info

<table>
<thead>
<tr>
<th>Leaks Repairs</th>
<th>Value Real Losses</th>
<th>Value Apparent Losses</th>
<th>Miles Surveyed</th>
<th>Press Reduction</th>
<th>Cost Of Interventions</th>
<th>Water Saved (AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>168520</td>
<td>39132</td>
<td>0</td>
<td>False</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At Least As effective As No
Exemption No
Comments:
BMP 1.3 Metering With Commodity

Numbered Unmetered Accounts	No
Metered Accounts billed by volume of use | Yes
Number of CII Accounts with Mixed Use Meters | 301
Conducted a feasibility study to assess merits of a program to provide incentives to switch mixed-use accounts to dedicated landscape meters? | Yes
Feasibility Study provided to CUWCC? | Yes
Date: 9/5/2013
Uploaded file name:
Completed a written plan, policy or program to test, repair and replace meters | Yes
At Least As effective As | No
Exemption | No

Comments:
BMP 1.4 Retail Conservation Pricing

On Track

Carpenteria Valley Water District

Implementation (Water Rate Structure)

<table>
<thead>
<tr>
<th>Customer Class</th>
<th>Water Rate Type</th>
<th>Conserving Rate?</th>
<th>(V) Total Revenue Commodity Charges</th>
<th>(M) Total Revenue Fixed Carges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>2644210.64</td>
<td>1256808.41</td>
</tr>
<tr>
<td>Multi-Family</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>1385090.79</td>
<td>1059846.1</td>
</tr>
<tr>
<td>Commercial</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>876196.21</td>
<td>183631.67</td>
</tr>
<tr>
<td>Industrial</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>123208.02</td>
<td>195655.91</td>
</tr>
<tr>
<td>Institutional</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>323970.61</td>
<td>92716.44</td>
</tr>
<tr>
<td>Dedicated Irrigation</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>194545.05</td>
<td>53698.32</td>
</tr>
<tr>
<td>Agricultural</td>
<td>Increasing Block</td>
<td>Yes</td>
<td>2019368.85</td>
<td>798732.91</td>
</tr>
</tbody>
</table>

Calculate: V / (V + M) 68 %

Implementation Option: Use Annual Revenue As Reported

Use 3 years average instead of most recent year

Canadian Water and Wastewater Association

Upload file:

Agency Provide Sewer Service: No

At Least As effective As: No

Exemption: No

Comments:
BMP 2.1 Public Outreach

Does your agency perform Public Outreach programs? Yes

The list of wholesale agencies performing public outreach which can be counted to help the agency comply with the BMP

<table>
<thead>
<tr>
<th>Agency Name</th>
<th>ID number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Barbara County Water Agency</td>
<td>200</td>
</tr>
</tbody>
</table>

The name of agency, contact name and email address if not CUWCC Group 1 members

Did at least one contact take place during each quarter of the reporting year? No

<table>
<thead>
<tr>
<th>Public Outreach Program List</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>General water conservation information</td>
<td>72</td>
</tr>
<tr>
<td>Flyers and/or brochures (total copies), bill stuffers, messages printed on bill, information packets</td>
<td>24</td>
</tr>
<tr>
<td>Landscape water conservation media campaigns</td>
<td>3</td>
</tr>
<tr>
<td>Website</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
</tr>
</tbody>
</table>

Did at least one contact take place during each quarter of the reporting year? Yes

<table>
<thead>
<tr>
<th>Number Media Contacts</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Advertisings</td>
<td>2</td>
</tr>
<tr>
<td>Newspaper contacts</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
</tr>
</tbody>
</table>

Did at least one website update take place during each quarter of the reporting year? Yes

Public Information Program Annual Budget

<table>
<thead>
<tr>
<th>Annual Budget Category</th>
<th>Annual Budget Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Outreach</td>
<td>3000</td>
</tr>
<tr>
<td>Total Amount</td>
<td>3000</td>
</tr>
</tbody>
</table>

Public Outreach Additional Programs

Chamber of Commerce Speaking Events
Rotary Club Speaking Events

Description of all other Public Outreach programs

Comments:
BMP 2.1 Public Outreach

ON TRACK

<table>
<thead>
<tr>
<th>At Least As effective As</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exemption</th>
<th>No</th>
<th>0</th>
</tr>
</thead>
</table>
BMP 2.2 School Education Programs

36 Carpinteria Valley Water District Retail

<table>
<thead>
<tr>
<th>Does your agency implement School Education programs?</th>
<th>Yes</th>
</tr>
</thead>
</table>

The list of wholesale agencies performing public outreach which can be counted to help the agency comply with the BMP:

- Santa Barbara County Water Agency

<table>
<thead>
<tr>
<th>Materials meet state education framework requirements?</th>
<th>Yes</th>
</tr>
</thead>
</table>

Materials downloaded from waterwisesb.org include language arts, math and science standards. Contact Shows That Teach for education framework requirements for the school assemblies.

<table>
<thead>
<tr>
<th>Materials distributed to K-6?</th>
<th>Yes</th>
</tr>
</thead>
</table>

Student workbooks/worksheets, resource books, board games, hands-on water activities for teachers, and students in grades k-8, focusing on water issues can be downloaded from the regional website, waterwisesb.org.

<table>
<thead>
<tr>
<th>Materials distributed to 7-12 students?</th>
<th>Yes (Info Only)</th>
</tr>
</thead>
</table>

Resource Action Group LivingWise Program kits given to 178 students at Carpinteria Middle School. In addition, teachers can download the Jr. High Water Activities Manual from WaterWiseSB.org

<table>
<thead>
<tr>
<th>Annual budget for school education program:</th>
<th>600.00</th>
</tr>
</thead>
</table>

Description of all other water supplier education programs:

- Large group assembly, science fair award, high school video contest

Comments:

<table>
<thead>
<tr>
<th>At Least As effective As</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exemption</th>
<th>No</th>
<th>0</th>
</tr>
</thead>
</table>
Carpinteria Valley Water District
Agency

Date Agency Signed MOU: 5/15/1996

Coverage Option: Flextrack

Total Measured Water Savings (AF/Year)

<table>
<thead>
<tr>
<th>TRADITIONAL</th>
<th>FLEXTRACK</th>
<th>ACTUAL</th>
<th>TARGET</th>
<th>Prior Activities Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.62</td>
<td>0</td>
<td>5.62</td>
<td>1.98</td>
<td>1.210</td>
</tr>
</tbody>
</table>

Residential Assistance

<table>
<thead>
<tr>
<th></th>
<th>Single Family Accounts</th>
<th>Single Family Target</th>
<th>Multi Family Units</th>
<th>Multi Family Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number Of Accounts/Units</td>
<td>3170</td>
<td></td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>Total Participants during Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Leak Detection Surveys or Assistance on Customer Property</td>
<td>63</td>
<td>23.78</td>
<td>4</td>
<td>2.62</td>
</tr>
<tr>
<td>Number of Faucet Aerators Distributed</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of WSS Showerheads Distributed</td>
<td>5</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Landscape Water Surveys</td>
<td>63</td>
<td>23.78</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Has agency reached a 75% market saturation for showerheads? No

High Efficiency Clothes Washers

<table>
<thead>
<tr>
<th></th>
<th>Single Family Accounts</th>
<th>Single Family Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of installations for HECW</td>
<td>18</td>
<td>19.02</td>
</tr>
</tbody>
</table>

Are financial incentives provided for HECWs? Yes

Has agency completed a HECW Market Penetration Study? No

Water Sense Specification Toilets

<table>
<thead>
<tr>
<th></th>
<th>Single Family Target</th>
<th>Multi Family Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit 'On Resale' Ordinance exists</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>75% Market Penetration Achieved</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Five year average Resale Rate</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Number Toilets per Household</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Number WSS Toilets Installed</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Target Number of WSS Toilets</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

WSS for New Residential Development

<table>
<thead>
<tr>
<th></th>
<th>Single Family Units</th>
<th>Multi Family Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does an Ordinance Exists Requiring WSS Fixtures and Appliances in new SF and MF residences?</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Number of new SF & MF units built</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Incentives
Unique Conservation Measures

Residential Assistance / Landscape Water Survey unique water savings

Measured water savings (AF/YR) 0
Uploaded file name:

High Efficiency Clothes Washers unique water savings

Measured water savings (AF/YR) 0
Uploaded file name:

WaterSense Specification toilets unique water savings

SF Measured water savings (AF/YR) MF Measured water savings (AF/YR)
Uploaded file name:

WaterSense Specification toilets for New Residential development unique water savings

Measured water savings (AF/YR) 0
Uploaded file name:

High bill contact with single-family and multi-family customers

Measured water savings (AF/YR)
Uploaded file name:

Educate residential customers about the behavioral aspects of water conservation

Measured water savings (AF/YR) 0
Uploaded file name:

Notify residential customers of leaks on the customer's side of the meters

Measured water savings (AF/YR) 0
Uploaded file name:

Provide bill or surcharge refunds for customers to repair leaks on the customer's side of the meters

Measured water savings (AF/YR) 0
Uploaded file name:

Provide unique water savings fixtures that are not included in the BMP list above

Measured water savings (AF/YR) 0
Uploaded file name:

Install residence water use monitors

Measured water savings (AF/YR) 0
Uploaded file name:

Participate in programs that provide residences with school water conservation kits

Measured water savings (AF/YR) 0
Uploaded file name:

Implement in automatic meter reading program for residential customers
Traditional Water Savings Calculation result:

<table>
<thead>
<tr>
<th>Measures</th>
<th>Target Water Savings (AF)</th>
<th>Actual Water Savings (AF):</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF Leak Detection Surveys</td>
<td>0.53</td>
<td>1.95</td>
</tr>
<tr>
<td>MF Leak Detection Surveys</td>
<td>0.03</td>
<td>0.28</td>
</tr>
<tr>
<td>Landscape Water Surveys</td>
<td>0.53</td>
<td>1.86</td>
</tr>
<tr>
<td>SF WSS Toilets Installed</td>
<td>0.00</td>
<td>0.89</td>
</tr>
<tr>
<td>MF WSS Toilets Installed</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>HECW</td>
<td>0.89</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Comments:
- At Least As Effective As: No
- Exemption: No
CII Baseline Water Use (AF): 685.00

Water Efficiency Measures:

<table>
<thead>
<tr>
<th>Quantity Installed</th>
<th>Water Savings</th>
<th>Accept Council's default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
<td>No</td>
</tr>
</tbody>
</table>

Total Water Savings: 0.03

Unique Conservation Measures

Industrial Process Water Use Reduction

Measured water savings (AF/YR)

Uploaded file name:

Commercial Laundry Retrofits

Measured water savings (AF/YR)

Uploaded file name:

Industrial Laundry Retrofits

Measured water savings (AF/YR)

Uploaded file name:

Filter Upgrades (for pools, spas and fountains)
CUWCC BMP Coverage Report 2014

BMP4 - Commercial Industrial
Institutional

Measured water savings (AF/YR)
Uploaded file name:
Car Wash Reclamation Systems
Measured water savings (AF/YR)
Uploaded file name:
Wet Cleaning
Measured water savings (AF/YR)
Uploaded file name:
Water Audits (to avoid double counting, do not include device/replacement water savings)
Measured water savings (AF/YR)
Uploaded file name:
Clean In Place (CIP) Technology (such as bottle sterilization in a beverage processing plant)
Measured water savings (AF/YR)
Uploaded file name:
Waterless Wok
Measured water savings (AF/YR)
Uploaded file name:
Alternative On-site Water Sources
Measured water savings (AF/YR)
Uploaded file name:
Sub-metering
Measured water savings (AF/YR)
Uploaded file name:
High Efficiency Showerheads
Measured water savings (AF/YR)
Uploaded file name:
Faucet Flow Restrictors
Measured water savings (AF/YR)
Uploaded file name:
Water Efficiency Dishwashers
Measured water savings (AF/YR)
Uploaded file name:
Hot Water on Demand
Measured water savings (AF/YR)
Uploaded file name:
Pre-rinse spray Values of 1.3 gpm (gallons per minute) or less
Pre-rinse spray Valves of 1.3 gpm (gallons per minute) or less

Measured water savings (AF/YR)

Uploaded file name:

Central Flush Systems

Measured water savings (AF/YR)

Uploaded file name:

Other Measures chosen by the Agency

Measured water savings (AF/YR)

Uploaded file name:

Comments:

At Least As Effective As No

Exemption No
1) Accounts with Dedicated Irrigation Meters

a) Number of dedicated irrigation meter accounts
b) Number of dedicated irrigation meter accounts with water budgets
c) Aggregate water use for all dedicated non-recreational landscape accounts with water budgets
d) Aggregate acreage assigned water budgets for dedicated non-recreational landscape accounts with budgets

2) Commercial / Industrial / Institutional Accounts without Meters or with Mixed-Use Meters

Number of mixed use and un-metered accounts.
Number of irrigation water use surveys offered
Number of irrigation water use surveys accepted
Type: Incentives numbers received by customers:
Type: Rebates numbers received by customers:
Type No- or low-interest loan offered numbers received by customers:

Estimated annual water savings by customers receiving irrigation water savings surveys and implementing recommendations
Unique measured water Savings (AF/YR) in this measure
Uploaded the backup data if there are unique measured water savings? No

Financial Incentives

Unique measured water Savings (AF/YR) in Financial incentives
Uploaded the backup data if there are unique measured water savings? No

Unique Conservation Measures
1. Monitor and report on landscape water use
 1a. Measure landscapes and develop water budgets for customers with dedicated landscape meters. Provide timely water use reports with comparisons of water use to budget that provide customers the information they need to adjust irrigation schedules.
 Uploaded file name:
 1b. Measure landscapes and develop water budgets for customers with Mixed Use meters. Provide timely water use reports with comparisons of water use to budget that provide customers the information they need to adjust irrigation schedules.
 Uploaded file name:
 1c. Establish agency-wide water budget. (Include in Help notes: ETo based water budget in the MWELO changed in 2010 from .8ETo to .7ETo.)
 Uploaded file name:
 1d. Establish agency-wide, sector-based irrigation goal to reduce water use, based on season.
 Uploaded file name:

2. Provide technical landscape resources and training
 2a. Upon customer requests, provide landscape irrigation management and landscape design information and resources; provide assistance, answer customer questions, respond to run-off and high-bill calls.
 Uploaded file name:
 2b. Perform landscape & irrigation audits: including irrigation scheduling, plant information, and landscape area measurement.
 Uploaded file name:
 2c. Sponsor, co-sponsor, promote, or support landscape workshops, training, presentations and other technical educational events for homeowners and professionals: design, installation, maintenance, water management.
 Uploaded file name:
 2d. Establish time-of-day irrigation restrictions.
 Uploaded file name:
 2e. Establish day-of-week irrigation restrictions.
 Uploaded file name:

3. Provide incentives
3a. Establish landscape budget-based rates.

Uploaded file name:

3b. Provide incentives for conversions from mixed-use meters to dedicated landscape meters.

Uploaded file name:

3c. Provide incentives for irrigation equipment upgrades that improve distribution uniformity, irrigation efficiency, or scheduling capabilities.

Uploaded file name:

3d. Provide incentives for the reduction of water use over an irrigated area, or reduction in the size of the irrigated area due to replacement of turf or other high water-using plants with low water-using plants, artificial turf, or permeable surfaces.

Uploaded file name:

3e. Provide incentives for conversions from potable to recycled water.

Uploaded file name:

3f. Provide incentives for the use of alternative sources of water in the landscape (i.e. gray water, rainwater, cisterns, etc.)

Uploaded file name:

4. Participate in local and regional planning and regulatory activities

4a. Collaborate with planning agencies at the local and regional level, other water suppliers in the area and stakeholders in response to state or federal requirements such as the State Model Water Efficient Landscape Ordinance and AB 1881. Participate in the development, review, implementation, and enforcement of requirements for new developments. Provide water use data to planning agencies.

4b. Establish or participate in a water conservation advisory committee or other community outreach effort to drive market transformation and exchange information about landscape water conservation with developers, community-based organizations, homeowners associations, residential customers, landscape professionals, educators, other water suppliers in region.

4c. Participate in regional efforts: integrated water resource management, watershed management, NPDES permit agencies, etc.

5. Develop a holistic approach to landscape water use efficiency

5a. Develop and implement a comprehensive landscape water conservation program for all customers. Target marketing efforts to those most likely to result in benefits to both customer and Agency.

Uploaded file name:

6. Other Measures

Other Landscape Measures.

Uploaded file name:
CVWD has chosen the Traditional option but has participated activities outlined under the Flex Track reporting criteria

- At Least As Effective As: No
- Exemption: No
Appendix K

Water Rates and Charges
2016-17 WATERS RATES

<table>
<thead>
<tr>
<th>M & I</th>
<th>PUMPING LEVEL I</th>
<th>PUMPING LEVEL II</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>$3.63</td>
<td>$3.89</td>
</tr>
<tr>
<td>PEAK</td>
<td>$4.75</td>
<td>$5.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE I (i) and (ii) RESIDENTIAL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
</tr>
<tr>
<td>PEAK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE I (iii) COMMERCIAL & PUBLIC AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
</tr>
<tr>
<td>PEAK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE II IRRIGATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1:</td>
</tr>
<tr>
<td>$1.91</td>
</tr>
<tr>
<td>Tier 2: (temporary)</td>
</tr>
<tr>
<td>Residential Equivalency Charge</td>
</tr>
</tbody>
</table>

1 UNIT = 100 HUNDRED CUBIC FEET (HCF) = 748 GALLONS

PUMPING LEVEL I = 350 FEET ABOVE SEA LEVEL

PUMPING LEVEL II = 650 FEET ABOVE SEA LEVEL

TABLE II
MONTHLY BASIC AND STATE WATER PROJECT (SWP) SERVICE CHARGES AND TEMPORARY DROUGHT METER SURCHARGE

<table>
<thead>
<tr>
<th>METER SIZE</th>
<th>SERVICE CHARGE BASIC</th>
<th>SERVICE CHARGE SWP</th>
<th>SERVICE CHARGE DROUGHT</th>
<th>TOTAL SERVICE CHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8"</td>
<td>9.63</td>
<td>30.00</td>
<td>3.00</td>
<td>$42.83</td>
</tr>
<tr>
<td>3/4"</td>
<td>9.63</td>
<td>30.00</td>
<td>3.00</td>
<td>$42.83</td>
</tr>
<tr>
<td>1"</td>
<td>16.38</td>
<td>50.00</td>
<td>5.00</td>
<td>$71.38</td>
</tr>
<tr>
<td>1 1/2"</td>
<td>32.75</td>
<td>100.00</td>
<td>10.00</td>
<td>$142.75</td>
</tr>
<tr>
<td>2"</td>
<td>52.40</td>
<td>160.00</td>
<td>16.00</td>
<td>$228.40</td>
</tr>
<tr>
<td>3"</td>
<td>104.80</td>
<td>320.00</td>
<td>32.00</td>
<td>$456.80</td>
</tr>
<tr>
<td>4"</td>
<td>163.75</td>
<td>500.00</td>
<td>50.00</td>
<td>$713.75</td>
</tr>
<tr>
<td>6"</td>
<td>327.50</td>
<td>1,000.00</td>
<td>100.00</td>
<td>$1,427.50</td>
</tr>
<tr>
<td>8"</td>
<td>753.25</td>
<td>2,300.00</td>
<td>230.00</td>
<td>$3,283.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METER SIZE</th>
<th>CIP</th>
<th>DROUGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>$16.50</td>
<td>$4.20</td>
</tr>
<tr>
<td>Maximum</td>
<td>$275.00</td>
<td>$70.00</td>
</tr>
</tbody>
</table>

TABLE III
MONTHLY CAPITAL IMPROVEMENT PROGRAM (CIP) CHARGE AND TEMPORARY DROUGHT VOLUME SURCHARGE

<table>
<thead>
<tr>
<th>METER SIZE</th>
<th>SERVICE CHARGE BASIC</th>
<th>SERVICE CHARGE SWP</th>
<th>SERVICE CHARGE DROUGHT</th>
<th>TOTAL SERVICE CHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>6.55</td>
<td>20.00</td>
<td>2.00</td>
<td>$28.55</td>
</tr>
<tr>
<td>3"</td>
<td>14.74</td>
<td>45.00</td>
<td>4.50</td>
<td>$64.24</td>
</tr>
<tr>
<td>4"</td>
<td>26.20</td>
<td>80.00</td>
<td>8.00</td>
<td>$114.20</td>
</tr>
<tr>
<td>6"</td>
<td>52.40</td>
<td>160.00</td>
<td>16.00</td>
<td>$256.95</td>
</tr>
<tr>
<td>8"</td>
<td>104.80</td>
<td>320.00</td>
<td>32.00</td>
<td>$456.80</td>
</tr>
<tr>
<td>10"</td>
<td>163.75</td>
<td>500.00</td>
<td>50.00</td>
<td>$713.75</td>
</tr>
</tbody>
</table>

TABLE IV
MONTHLY FIRE SERVICE CHARGES

<table>
<thead>
<tr>
<th>METER SIZE</th>
<th>SERVICE CHARGE BASIC</th>
<th>SERVICE CHARGE SWP</th>
<th>SERVICE CHARGE DROUGHT</th>
<th>TOTAL SERVICE CHARGE</th>
</tr>
</thead>
</table>

1 BASE = 5 year Dec. to Mar. water consumption by account / dwelling unit; 6 HCF minimum

PEAK = all consumption in excess of BASE

2 All Type II Irrigation accounts with at least one dwelling unit will be assessed a monthly Residential Equivalency Charge (REQ) per dwelling unit and a monthly CIP charge equivalent to the 5-year average single family residential usage.

3 All Type I (ii) Master-metered Residential accounts will be assessed Dwelling Unit Equivalency Charges (DEQ) and Capital Improvement Program Charges (CIP) based on the number of dwelling units served by a single meter.

4 The CIP rate is multiplied by the 5-year monthly average water consumption by account. The MINIMUM monthly charge is 6 HCF per dwelling unit or account. The MAXIMUM monthly charge is 100 HCF per dwelling unit or account.

CARPINTERIA VALLEY WATER DISTRICT
1301 SANTA YNEZ AVENUE
CARPINTERIA, CA 93013

2016-2017 Rates and Charges
Appendix L

Examples of District's Public Education Materials
AGRICULTURE

Water availability and costs are an important consideration in the Carpinteria Valley. Efficient irrigation methods and scheduling are instrumental to maximizing water use efficiency. The following programs and services are available to CVWD Agricultural customers to help them attain maximum water use efficiency and eliminate water waste.

CVWD Soil Map

Free Agriculture Irrigation Evaluations
For a limited time, the Cachuma Resource Conservation District Mobile Irrigation Lab Program is offering free onsite assessments of agricultural operation irrigation systems. An irrigation specialist will review the system and provide recommendations to improve performance. View or download flyer here.

Free Technical Assistance for Avocado & Citrus Growers
The Cachuma Resource Conservation District is offering free technical assistance and funding is available for qualified improvement projects. View or download flyer here.

State Water Efficiency and Enhancement Program (SWEEP) Grants
This grant helps to implement on-farm irrigation savings that reduce energy use resulting in greenhouse gas (GHGs) emission reductions and water savings. Grant applications are due by Friday, January 8, 2016. Attend the free workshops and webinar. View or download flyer here for more information. Download application and view Frequently Asked Questions here.

For Ag Irrigation Evaluation or Technical Assistance Programs, contact Jamie Whiteford at (805) 764-5132 or Anne Coates at (805) 455-2820.

California Irrigation Management Information System (CIMIS)
This service provides current reference evapotranspiration (ET) data to help you maintain the most efficient irrigation scheduling.

You may access current Eto data by calling the toll-free CIMIS Hotline for Santa Barbara County. The Hotline is updated each weekday by 9:00 am with Eto data for the previous seven days for each CIMIS weather station in Santa Barbara County.

Toll-free CIMIS Hotline for Santa Barbara County: 1-888-246-4728

You may become a CIMIS user by acquiring a password to access the centralized CIMIS computer in Sacramento, using a computer modem. You can have a password assigned to you by calling 1-800-922-4647. Access to the CIMIS computer database is free of charge.

You can access Eto data for the last seven days, or monthly averages for the last eleven months here.

Free Hydraulic Pump Tests
Southern California Edison offers free hydraulic pump tests. For information on pumps and SCE's Pump Test Program, click here.

Request a Pump Test.

For more information about water conservation, email info@cvwd.net or call (805) 684-2816 ext. 116.

USDA Natural Resources Conservation Service - California
NRCS works with landowners through conservation planning and assistance designed to benefit the soil, water, air, plants, and animals that result in productive lands and healthy ecosystems. For more information, click here.

Hillside Orchard Drainage Video
Solutions to manage stormwater, irrigation and erosion issues throughout hillside farm.
What is the Mobile Irrigation Lab Program?

The CRCD MIL Program is staffed by irrigation specialists who will conduct an onsite assessment of your operation’s irrigation system.

Why Should You Schedule an Irrigation Evaluation?

- Evaluations are Recommended every 3-5 years to...
 - Improve Crop Production
 - Stay Ahead of Regulations
 - Limit Environmental Impacts
 - Conserve Water and Energy
 - Demonstrate Sustainability
 - Save You Time and Money!

“The Cachuma Resource Conservation District is an equal opportunity provider and employer.”
Cachuma Resource Conservation District | 920 E. Stowell Rd. Santa Maria, CA 93454
jamie.k.whiteford@gmail.com | 805-764-5132 | acoates@rcdsantabarbara.org | 805-455-2820
FREE TECHNICAL ASSISTANCE FOR AVOCADO & CITRUS GROWERS
offered by the Cachuma Resource Conservation District

Irrigation Assessments Nutrient Budgeting Conservation Practices

$ Funding is available $ for qualified improvement projects

For program details contact the Cachuma Resource Conservation District (CRCD)

Jamie Whiteford 805.764.5132 jamie.k.whiteford@gmail.com
Anne Coates 805.455.2820 acoates@rcdsantabarbara.org

Funding is limited. Technical Assistance is available to all growers in Santa Barbara County. Mobile Irrigation Lab (MIL) program funds are provided in full or in part by

Cachuma Resource Conservation District • 920 E Stowell Road, Santa Maria, California 93454
The Cachuma Resource Conservation District is an Equal Opportunity provider and employer
The information in this guide is valuable to any of our customers that operate a pumping plant to irrigate crops, landscaping or turf grass, supply water for domestic use or who provides water to an industrial process.

Annual energy costs represent a significant percentage of operating expenses for most agricultural businesses and municipalities—sometimes as much as 60 to 70%. A significant portion of that comes from the energy required to irrigate farmable and municipal lands, parks and other public places.

Knowing and understanding your Overall Pumping Plant Efficiency will help you manage your energy costs much more effectively. We have compiled this handy guide to help you in that effort.

Pumps and Pumping Plants: What’s the Difference?

Before exploring the fundamentals of improving pump efficiency, it is important to understand the difference between a pump and the pumping plant.

The pumping plant is more than just the pump. It encompasses the pump plus motor equipment and controls, including all associated fittings from the water source through the pump to the discharge into the distribution system.

What Factors Affect Pump Performance?

To ensure your pumps are capable of irrigating or supplying water effectively—and that you’re not wasting energy—it is critical to routinely evaluate your pumping plant’s operating efficiency, as many “working” pumps are nonetheless not working well.

Efficient Versus Inefficient Pumping Plants²

Pumping plants can lose efficiency at many stages throughout the system.

² Ibid.
A pump’s performance is affected by a variety of factors:

- Type, size and condition of pump
- Pump speed plus total head or pump pressure
- Condition of the well
- Conversion of mechanical energy (pump) to water-energy (water flow), motor efficiency, and power efficiency
- Water flow efficiency through pipes, fittings, valves, etc.

Overall Pumping Plant Efficiency (OPE) and Why It’s Important

Overall Pumping Plant Efficiency is an important metric for all operators to know. It represents the relationship between the power consumed in kilowatts and acre feet of water delivered in gallons per minute. It’s normally expressed as a percentage of how much horsepower is needed by the pumping plant, higher percentages indicating greater pump efficiency.

\[
\text{Output HP} = \text{OPE}^3 \quad \frac{\text{Input HP}}{}
\]

Making system changes to improve OPE can help you:

- Lower current pumping requirements with conscientious pumping-system management
- Reduce total energy use, which saves money
- Track trends for budgeting
- Foresee potential problems

Did You Know?

The annual cost of energy represents a significant percentage of operating expenses for most agricultural businesses and municipalities—sometimes as much as 60 to 70%!

Only Testing Will Tell

Improving OPE could result in significant energy and energy cost savings (see accompanying charts). But OPE can only be measured by a formal pump test. For this reason, we offer a program that will test your pumps free of charge.

<table>
<thead>
<tr>
<th>Overall Efficiency</th>
<th>Inefficient Pump</th>
<th>Efficient Pump</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/Acre Ft.</td>
<td>55%</td>
<td>73%</td>
<td>138</td>
</tr>
<tr>
<td>Acre Ft./Year</td>
<td>822</td>
<td>822</td>
<td></td>
</tr>
<tr>
<td>Annual kWh</td>
<td>533,472</td>
<td>420,000</td>
<td>113,472</td>
</tr>
<tr>
<td>Cost per year @ $.11/kWh</td>
<td>$58,682</td>
<td>$46,200</td>
<td>$12,482</td>
</tr>
</tbody>
</table>

Potential Annual Savings for Improving Overall Pumping Plant Efficiency

<table>
<thead>
<tr>
<th>Year</th>
<th>Inefficient Plant</th>
<th>Efficient Plant</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Annual Cost @ 55% OPE</td>
<td>Annual Cost @ 73% OPE</td>
<td>Annual Operational Savings</td>
</tr>
<tr>
<td>Year 1</td>
<td>$58,682</td>
<td>$46,200</td>
<td>$12,482</td>
</tr>
<tr>
<td>Year 2</td>
<td>$58,682</td>
<td>$46,200</td>
<td>$12,482</td>
</tr>
<tr>
<td>Year 3</td>
<td>$58,682</td>
<td>$46,200</td>
<td>$12,482</td>
</tr>
<tr>
<td>Year 4</td>
<td>$58,682</td>
<td>$46,200</td>
<td>$12,482</td>
</tr>
<tr>
<td>Year 5</td>
<td>$58,682</td>
<td>$46,200</td>
<td>$12,482</td>
</tr>
<tr>
<td>5 Year Totals</td>
<td>$293,410</td>
<td>$231,000</td>
<td>$62,410</td>
</tr>
</tbody>
</table>

5-Year Comparison: Inefficient vs. Efficient Overall Plant Efficiency

4. Ibid.
5. Ibid.
6. Ibid.
Job One: Choose the Right Pump for the Right Application

Matching the pump to the task is the first step in ensuring you’re operating efficiently and making the best use of energy. The principal pump type utilized in agriculture is the centrifugal pump, which works by adding kinetic energy to a fluid through a spinning impeller, much as a fan blows air. The type of centrifugal pump needed for the job should be based on the water and pumping requirements.

Turbine Pump:
The smaller diameters found in turbine pumps make them more suitable for shallow or deep-pumping applications. What’s more, their more compact design affords greater flexibility for ease of maintenance and reconfiguration.

Submersible Pump:
Features a waterproof electric motor connected directly to a turbine pump. They are typically used when the space above ground is at a premium or straight-line access to the water source is not possible. They are also much quieter than above-ground pumps.

Horizontal Pump:
Relatively simple in design and inexpensive, horizontal pumps are centrifugal boosters that are not used for well applications.

Each of these pumps can employ different impellers depending on the application.

Radial Flow Impeller:
Produce generally high pressures at lower flows and are most often used in booster pumps, horizontal centrifugal pumps and deep well applications.

Axial Flow Impeller:
Provide very high flows at relatively low pressure and are typically used in canal lift pumps, where water flows in a straight line.

Mixed Flow Impeller: Helps water flow through and out of the impeller at an angle less than 90°.
Did you know?

Well pumps that pump a lot of sand-filled water **should be tested yearly. Booster pumps** supplied by clean water should be tested every three years.

The Importance Of Regular Pump Testing

As explained earlier, a key stepping stone to better energy management is improving OPE, which can only be determined by way of a formal test. Pumps should be tested every one to three years, depending on the annual usage and severity of operating conditions.

Regular pump testing can reveal:

- How efficiently the pump itself is working
- How well the pump management system is working including the controls and various other fittings
- If the pump is using energy most efficiently
- The potential for more serious problems
- If you have the correct type of pump in place for the job

SCE’s Free Pump Test Program Can Help

Because of the impact of OPE on energy demand across the State of California, we conduct complete and accurate efficiency tests on water pumps. Indeed, the overarching goal of our Pump Test Program is to help operations like yours make the most efficient use of every kilowatt of electricity to save energy and money.

You’ll also be interested to know that we frequently offer energy efficiency cash incentives and rebates applicable to pump plant operations.

Talk to your Account Manager about the availability of incentives and rebates in your area.

What We Measure

Our free Pump Test Program measures various aspects of your pump(s) while in operation to determine Overall Pumping Plant Efficiency:

- Rate of flow
- Total head
- Power input to the pumping plant

When your pump test is completed, you’ll receive a report showing how your pump is performing—including your OPE, how much your OPE can be improved plus how much you could save on energy costs.

Designing and Maintaining an Efficient System

The performance of your pumping system is determined by many things including its basic design and configuration. That may include the type of motors used, the size of the piping, pumping pressure and more.

Making sure the system is designed correctly from the start—or properly redesigned if necessary—will prove to be cost-effective over time, and could have an immediate positive impact on the cost and use of energy.
Potential Energy Savings: Standard- Versus Premium-Efficiency Motors

For more information, visit the U.S. Department of Energy’s Best Practices website at eere.energy.gov.

<table>
<thead>
<tr>
<th>Motor HP</th>
<th>Standard Efficiency Motor</th>
<th>Annual kWh 6000 Hours Operation</th>
<th>Premium Efficiency Motor</th>
<th>Annual kWh 6000 Hours Operation</th>
<th>Energy Savings kWh/Year</th>
<th>Energy Savings $/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>90</td>
<td>93,240</td>
<td>93.9</td>
<td>89,339</td>
<td>3,901</td>
<td>$429</td>
</tr>
<tr>
<td>50</td>
<td>91.2</td>
<td>184,070</td>
<td>94.8</td>
<td>177,132</td>
<td>6,938</td>
<td>$763</td>
</tr>
<tr>
<td>100</td>
<td>92.7</td>
<td>362,038</td>
<td>95.4</td>
<td>351,813</td>
<td>10,225</td>
<td>$1,125</td>
</tr>
<tr>
<td>150</td>
<td>93.1</td>
<td>540,992</td>
<td>95.8</td>
<td>525,407</td>
<td>15,585</td>
<td>$1,714</td>
</tr>
<tr>
<td>200</td>
<td>93.5</td>
<td>718,630</td>
<td>95.8</td>
<td>700,470</td>
<td>18,160</td>
<td>$1,998</td>
</tr>
<tr>
<td>250</td>
<td>94.2</td>
<td>886,969</td>
<td>96.0</td>
<td>874,219</td>
<td>12,750</td>
<td>$1,403</td>
</tr>
</tbody>
</table>

The following system elements should be given careful consideration:

- **Energy-Efficient Motors**: Motors are an essential part of your pumping system. But some are more energy-efficient than others. Purchasing a new high-efficiency motor may be more economical overall than repairing a damaged motor when you factor in energy savings. In fact, as the accompanying chart shows, a premium-efficiency motor could save you hundreds of dollars in energy costs each year.

- **Variable-Speed Drives (VSDs)**: For systems with oversized pumps or varying loads, consider installing a VSD. VSDs improve a pump’s performance by changing its rotational speed to better match the pumping load. A VSD-controlled pump can maintain pressure when the flow is changing, or constant flow when the pressure is changing. In either case, the result is optimum productivity with reduced energy usage compared to valve throttling or bypassing.

- **Excessive Pumping Pressure**: Excessive pumping pressures not only make your pumping system work inefficiently; they also waste energy. Several different things could cause this:
 - A defective booster pump control and valves
 - Pumping against a higher head than is needed to move water (false head)
 - Supplying water at a pressure exceeding state regulations

Check your pump pressures regularly to see that they meet but do not exceed requirements.

- **Piping System Friction Losses**: Pipelines should be sized to keep fluid velocities and total head losses at acceptable levels. Indeed, the best pump system designs balance capital expenditures for piping with treatment requirements, system requirements and overall energy consumption.

- **Well Conditions and Pumping Costs**: Well performance can also impact Overall Pumping Plant Efficiency along with pumping costs. Well-specific capacity—the well flow rate divided by the drawdown for that flow rate—is influenced by such elements as aquifer conditions, well casing diameter, the well screen and more.

Well performance will generally degrade with time due to a variety of causes. Well screens can corrode or encrust with various deposits that reduce flow openings into the well; and gravel packs can also become plugged with silt. Attempting to pump too much water by using too big a pump for the aquifer also results in low well-specific capacity. Consult with your pump dealer and/or well driller if the pump test history reveals significant reduction in well-specific capacity over time.

Automated SCADA System Saves You Time and Energy

By automating key pump plant operations, an innovative Supervisory Control and Data Acquisition (SCADA) has the potential to maximize your pumping system savings with a minimal use of manpower.

SCADA consists of a central control panel that monitors the entire pumping system. An override feature allows authorized personnel to override the automated system if necessary.
employees to vary the operating schedule at any time or make across-the-board adjustments to different areas.

The SCADA system can be a very smart investment for most any type of operation, providing a payback of less than two years in many cases. Be sure to ask your Account Manager about this innovative solution.

By Conserving Energy, We All Win

For more than 100 years, we’ve been dedicated to helping communities and other enterprises by providing reliable and affordable power plus energy-saving insights.

As this guide shows, choosing the right pump, plus regular pump testing, maintenance and best practices is good for your business, and everyone who depends on the electrical grid.

Apply for SCE Energy Efficiency Solutions

We offer a variety of programs that can help you address problem areas and lower your energy costs, many of which include incentives such as hardware and more. Visit sce.com/solutions or call 1-800-736-4777.

Contact Our Pump Testing and Hydraulic Services Department

We offer a variety of services to assist you. Schedule a pump test at on.sce.com/pumptest or visit one of our Education Centers:

Tulare
4175 South Laspina Street
Tulare, CA 92374
1-800-772-4822

Irwindale
6090 North Irwindale Avenue
Irwindale, CA 91702
1-800-336-2822

Additional Resources

Hydraulic Institute
pumps.org

SCE for Agricultural and Water Businesses
sce.com/agriculture
sce.com/water

energy.gov/eere/amo/ta

Interested In Learning More?

Choose from the many topics in our Energy Conservation Series:

- LED Lights: A Bright New Way to Conserve Energy
- Plug In To Greater Energy Savings—With Smart Plug Load Management
- Switch To a More Energy-Efficient Business—With Smart Lighting Controls
- Manufacturing Motors & Compressors: Start Your Energy-Efficient Engines
- On the Menu: Major Energy Savings With Restaurant Refrigeration
- Energy Efficiency Is In the Air: Optimizing Your HVAC
- Energy Efficiency Is In the Air: Optimizing Your HVAC
Renew Your Participation in CVWD’s Lifeline Customer Assistance Program

Are you currently enrolled in the District’s Lifeline Customer Assistance Program? Would you like to continue receiving the monthly discount? If yes, then please submit a copy (April or May 2012) of your Southern California Edison, Gas or mobile home park (MHP) bill indicating your participation in their CARE program. **Submittals must be made by June 20, 2012** to ensure continued participation in CVWD’s Lifeline Program. **Retroactive discounts will not be applied for submissions received after June 20th.**

Not a current Lifeline Program participant, but qualify? Simply bring in your Edison bill, Gas or MHP bill, which indicates that you are a CARE participant (page 3 of Edison bill), to enroll in the District’s program. **The CARE participant’s name must be the same as the name indicated on the water account.**

Prop 218 Hearing and Budget Adoption Schedule

The Board of Directors of the Carpinteria Valley Water District will hold a public hearing to consider increases in its Water Rates and Charges beginning with the July 2012 billing period. Below are the scheduled dates for the Prop 218 Hearing and Budget Adoption.

Prop 218 Hearing
Carpinteria City Hall
5775 Carpinteria Avenue
Wednesday, May 30, 2012 at 5:30 p.m.

Budget Adoption
Carpinteria City Hall
5775 Carpinteria Avenue
Wednesday, June 13, 2012 at 5:30 p.m.

The public is encouraged to attend!

May is Water Awareness Month

This May, take an on-line Home Water Survey at

https://www.surveymonkey.com/s/HomeWaterSurvey

and get your choice of a free low-flow showerhead, low water using garden nozzle or garden-wise CD.

Memorial Day Holiday

The District will be **closed** Monday, May 28th in observance of the Memorial Day Holiday.

In case of emergency, call (805) 684-2816.
Free Water Efficiency Workshop for Agricultural Customers

Wednesday, June 13, 2012
8:30 a.m. to 12 p.m.
Carpinteria Lions Park & Event Center
6197 Casitas Pass Rd, Carpinteria

Speakers include:
Ben Faber, PhD. - UC Cooperative Extension Farm Advisor
Topic: Making the System Work Right
Robert Fasteneau - Dept of Water Resources, CIMIS Division
Topic: What is CIMIS and how to use it for irrigation scheduling
Kevin Peterson - Cachuma Resource Conservation District, Mobile Lab
Topic: Ag/Urban Irrigation Mobile Lab Program

To RSVP or for more information,
contact Rhonda at 805-684-2816 ext. 116 or rhonda@cvwd.net

Board of Directors Meetings
Regular Board meetings may be held on the second and fourth Wednesday of every month at 5:30 pm at Carpinteria City Hall, 5775 Carpinteria Ave. The Board may also hold regular Board meetings other Wednesdays of the month at 5:30 pm at the District Offices at 1301 Santa Ynez Avenue.

Visit www.cvwd.net for new and updated information.
Heard About the Recent Water Emergencies in Gobernador Canyon and on Shepard Mesa??!!

No, there weren’t any….unless you were in the shoes of District employees Greg Stanford, Lance Edmondson and Omar Castro. Their emergency began on Monday, June 11 at 9:40 a.m. after an Edison meter meltdown affected the Water District’s pumps and motors for Lateral 30 to Gobernador Canyon and Shepard Mesa. District motor and pump # 1 immediately failed (and eventually had to be removed and re-wound in Ventura). And Lance, Greg and Omar worked until 2 a.m. the next morning in conjunction with Edison until the power company disabled its power transformer.

Then at 10 a.m. on Wednesday, June 13, District pump and motor #2 failed (and is in the process of being rewound in Ventura).

Fortunately, pump and motor #3 did not fail, and was able to run on the District's diesel fuel powered emergency generator until 2 p.m. on Friday, June 15 when Edison installed a new meter, a new and larger transformer and new leads and restored power.

Greg and Lance worked until 7:30 p.m. that Friday to install the newly re-wound motor for pump # 1.

Had the District's back-up generator system not worked, or failed, the District would have had to take water from its emergency connection with Casitas Municipal Water District and notify all residents of the problems associated with chloraminated water.

Carpinteria Valley Water District, as a public health and safety utility, requires its Field employees to respond to emergencies, big and little, at all times. The District always has one employee on-call to respond 24 hours a day, seven days a week. Most of the District’s emergency service call-outs go unnoticed by the general public.

Shown in the pictures below are Water Treatment Foreman Greg Stanford and Treatment Operator Lance Edmondson installing the rewound motor #1. Lance had been making twice daily trips until then to keep the diesel fuel tank full.
Board of Directors Meetings
Regular Board meetings may be held on any given Wednesday of every month at 5:30 pm at Carpinteria City Hall, 5775 Carpinteria Ave. They are typically held on the second and fourth Wednesdays.

Water Efficiency Workshop for Ag Customers
Pictured standing at left is Ben Faber, UC Cooperative Extension Farm Advisor speaking at the District’s June 13th, Water Efficiency Workshop for Agricultural customers. Other speakers included Robert Fastenau with the Department of Water Resources - CIMIS Division and Kevin Peterson with the Cachuma Resource Conservation District, Mobile Lab Program. Approximately 25 area farmers attended the event which focused on water efficient irrigation methods, technology, and programs available to farmers.

Visit www.cvwd.net for new and updated information.
Fresh clean drinking water is yours to use whenever you need it, but not to waste. Remember that a little effort and common sense will make a big difference.

Following the tips in this folder can save thousands of gallons of water every year in every household. If you see water being wasted in your own home, tighten up. If you see it being wasted anywhere else, speak up.

Slow the Flow...

Make Every Drop Count!

CARPINTERIA VALLEY WATER DISTRICT

1301 Santa Ynez
Carpinteria, CA 93013
(805) 684-2816
A Word About Water Awareness

The South Coast, like so many semi-arid areas, has a water supply which sometimes falls short of demand.

Learning to live within our water supply and using only what we need is essential.

This book of “do it yourself” conservation practices can help all of us extend our supply of water.

Outside the House

A large poplar tree at the edge of the yard in most communities consumes as much as 90% of home water usage.

A hose is the main outlet in using water. A 5/8 inch hose will carry more than 100 gallons in an hour.

Reduce your garden hose size to 1/2 inch for watering. It’s tighter and it provides about 800 gallons an hour which is more than adequate for watering.

Use a nozzle which can be shut off or adjusted to fine spray. When finished, shut off the hose instead of at the nozzle to avoid leaks.

A pinhole leak in an outside faucet can waste 125 gallons of water in twenty four hours.

Consider a water saving drip irrigation system that provides a slow, steady supply of water to garden shrubs, etc.

A twenty minute car wash can use 200 to 600 gallons of water.
Save Water While Gardening

Select California native and Mediterranean climate plants and shrubs which require small amounts of water. Ask at your nursery for a list of plants which use less water. Consider alternatives to big, thirsty lawns.

Dig basins around trees and bushes to concentrate the water where it is needed and prevent runoff.

Water only when plants require it and not according to a set schedule.

Set a timer to avoid over-watering your lawn. Water running down the gutter and sidewalks is not beneficial to plants.

Let grass grow taller in hot weather.

Water slowly and thoroughly during cool, windless hours in the early morning before 10 AM or in the late afternoon after 6 PM. High winds blow away the water and prevent proper coverage.

DRIVEWAY, WALKWAYS

Use a broom or rake instead of water to remove leaves, clippings, and debris.

POOL

Keep pool size to minimize evaporation. Use a cover to stay evaporation and keep water cleaner too.

Repair leaks, check waste filtration systems, and install regular where needed.

CAR

Take your car to a car wash that recycles their water.
Inside Water Use
Bathroom

This is where most of the home's water is used - about 40%, so it's the place where you can save the most.

SHOWERING

Save the amount of time you spend in the shower. Use a timer and keep the shower bath for every family member. A showerhead for five minutes can mean a savings of 30 to 40 gallons of water. Substituting the flow showerhead with a plain "off-white" can save you even more.

In the shower, let an showering can be waste while stepping up. Just pitch it off the water, step up and then turn the water on for more.

BATHING

Try washing both of your young men in the same tub of water. If they are not too dirty, save water and it is fun for the kids. Also, use bathwater to water plants and for heavier cleaning jobs.

BRUSHING

Turn the water on to wet the brush. Turn the water off while going the teeth - avoid brushing. Put a glass to rinse your mouth and wash the brush. This can mean the difference between using a pint of water and wasting several gallons.

Make sure you have a brusher on all sink faucets.

TOILETS ARE WATER WASTERS

A well-maintained toilet can mean a big water savings. Usually a 130 gallon per-day leak is not noticeable. Just a few drops of hand clearing of loose handles is the key. And wait for 15 minutes. If the toilet is leaking, the water in the bowl will change color. A soap bubble over one thousand gallons, slams down the drain slowly, that is until you replace your water line.

Use a waste basket for stepping of facial tissues. Remember, saving one flush is worth five to seven gallons of water in a standard toilet.

DO NOT

USE a brush in your toilet tank - it may dent or put and cause problems in your line. Instead, consider installing a low-flow inlet that uses 1.6 gallons per flush.
KITCHEN

COOK AND SAVE WATER

Boiling requires very little water if you use a tight fitting lid to conserve moisture. Consider steaming vegetables that way saving all the vitamins and minerals too. But if you do boil vegetables save the water for soap and sauces. They will be faster and more nutritious.

Remove ice cubes from the freezer a few minutes before you need the ice. The cubes will loosen at room temperature and save several quarts of water if not run under the tap. Don't quench those needs under the faucet either.

WASHING DISHES BY HAND

Scrape dishes, but don't pre-rinse. Stack pots and pans before washing. Instead of running water continuously, fill a wash and rinse basin with water. Use minimum amount of detergent. Add vinegar 2 to 1/2 cup to dishwater to prevent grease from clinging to dishes, pans and pots.

DISHWASHER

Do only full loads. Avoid using extra cycles.

Choose a water saving model. Some dishwashers use up to 25 gallons of water a cycle while newer models may use only 10 gallons. If you are buying a new dishwasher shop around to find the machines that use less water per cycle and are more efficient.

Repair leaks.
Inspect for connections to be sure they're tight and dry.

Many automatic dishwashers do not require rinsing dishes before loading the machine. But if your does, pour water in the sink and soak them.
KITCHEN

The kitchen is an excellent place for conservation. Be especially conscious of running water and develop the habit of shutting off the tap whenever possible.

SINK
- Report leaks.
- Check faucets and pipes for leaks.
- Report washers, repair or replace if necessary.
- Use an aerator or flow restrictor in faucet.

MAKE EVERY DROP COUNT

- Store water by accumulating food cuttings in the drain area and only switching on the garbage disposal when it is full. Using left-over wash water when you run the disposal will save more of our drinking water.
- Each time you need water to wash dishes, scrub vegetables, wash your face, shave, handwash clothes, and many other cleaning jobs, put the water in the can and pour the water you need instead of letting it run down the drain. This habit alone will save as much as two gallons a minute.

USE YOUR REFRIGERATOR TO SAVE WATER

For very young children, keep water cool filled with water in a low container place.

Drink water for good health, but don't waste water by trying to run it cold all the time. Keep a container and cool it in the refrigerator. This makes tap water taste better also.
Household Cleaning

For every job that uses water, there is a way to economize.

REGULAR CLEANING
- Use a pail or bucket instead of running water.
- Use a sponge mop instead of a string mop. Thieves water for mopping and take less water to keep the mop clean.

HEAVY CLEANING
- Presoak grills, oven parts, etc., overnight.
- Wash with an abrasive scrub brush or pad and use plenty of cold water to minimize water use.

LAUNDRY
- More than 10% of all water used in the home is in the washing machine. So even a small investment of time and money can pay off in the long run. Washing machines use 30-55 gallons per load. Use the load selector to match the water level to the load. It saves time, money and water.

Repair Leaks
- Check faucets and hose connections for leaks. Repair or replace when necessary. Insects, bats, cockroaches, etc.

Presoak
- For really dirty laundry and heavy cleaning jobs, a low-temperature, biodegradable detergent and a cold water rinse can be used again.

Water Treatment Devices

Although California's public water is safe and meets all State and Federal Health Standards, some residents have installed water softeners and drinking water filters at their homes and businesses. The amounts of water that water softeners and reverse osmosis systems use in their normal operations is a concern in our area and to use water wisely.

If you own or rent a water softener or RO system, there are several things you can do to minimize the amount of water used in their operation:

1. Contact your dealer or the manufacturer to ensure the water softener regeneration is only taking place as needed. Get a softener that regenerates when necessary, instead of by the clock. This could save thousands of gallons of water.

2. Contact your dealer or the manufacturer to arrange for the installation of an automatic shut-off valve on your reverse osmosis system. This shut-off valve will reduce the amount of water used in production of the reverse osmosis drinking water.

3. Consider alternatives to your choice of water treatment equipment. Newer equipment may be more water efficient.

4. Consider whether these devices are needed at your home.
Check Before You Travel

When leaving on vacation it is a good idea to shut off the water at the main shutoff valve. While you are away an undetected leak will result in great waste, possible damage, and an expensive water bill.

Check outside water faucets to see that they are turned off completely.

Check washing machines and other water appliances for leaks.

The Final Test of a Leak Proof House is Your Meter

HERE'S HOW IT'S DONE:

Turn off all faucets inside and outside the house.

Locate your meter box. In most neighborhoods, you'll find it located in a small concrete vault near the street.

Using a screwdriver, or a similar device, lift off the concrete cover.

Check the meter dial to see what number it is registering. If you have a round-reading meter, read it from the last digit on.

Wait 30 minutes then recheck the dial. Movement of the dial will indicate you have a leak.

The greater the movement of the dial, the larger the leak. The repair may be done very easily. Turn off the water or faucet. Be sure to call a plumber if the repair seems complicated.
CONTACT INFORMATION

Cachuma Resource Conservation District
(805) 673-9924 x 106

University of California Cooperative Extension
Santa Maria area (805) 544-0170

Santa Barbara area (805) 969-1960

California Department of Water Resources
Southern District Office (805) 350-1504 x 221

CIMIS Help Line (800) 320-0530

IMPROVING IRRIGATION EFFICIENCY

CALIFORNIA IRRIGATION MANAGER INFORMATION SYSTEM (CIMIS)

Providing a better灌溉 irrigation efficiency
Santa Barbara and San Luis Office Coord

Cachuma Reservoir
Cachuma Reservoir
9513 East Seed Rd.
Santa Maria, CA 93455

93553-9438
ABOUT CIMIS

CIMIS, the California Irrigation Management Information System, is a network of over 125 computerized weather stations, located at key agricultural and urban sites throughout California. Ten of these CIMIS stations are located in Santa Barbara and San Luis Obispo Counties. CIMIS provides local weather data daily.

HOW CIMIS WORKS

Weather data is collected from each CIMIS station, fed into a centralized computer data base, and converted into reference evapotranspiration (ETo). ETo is the combined value of estimated daily turf grass water use and soil evaporation.

Using crop coefficients and ETo, the water needs for a particular crop or turf grass can be estimated. Crop coefficients have been developed for many vegetables, field crops, trees, vines, turf grasses, and landscape plants. Known crop coefficients are available in UC Cooperative Extension publications.

With this information, irrigators can establish an irrigation schedule. In many cases, proper scheduling can reduce the amount of water applied during a season, and at the same time improve growth.

ACCESSING CIMIS

There are two ways to access CIMIS ETo data for scheduling irrigation in Santa Barbara County.

Hotline:
You may access ETo data for the last seven days Santa Barbara County CIMIS stations by calling a toll-free CIMIS Hotline.

From anywhere: 1-888-CIMIS2U (1-888-246-4721)
From Santa Maria: (805) 928-9344

The Hotline is updated each weekday by 9:00 am.

Internet:
Log on to www.cimis.water.ca.gov to access ETo data for the last seven days, or monthly averages the last eleven months at any station statewide.
BENEFITS OF THE PROGRAM

The California Resource Conservation District provides free irrigation evaluations for growers to evaluate irrigation systems and make recommendations to improve performance.

Articulation in the program is voluntary and all evaluation results are confidential.

IRRIGATION SYSTEM EVALUATIONS
FOR AGRICULTURAL WATER L

- Improve crop quality
- Increase production
- Lower interest costs
- Reduce water usage and cost
- Lower pesticide costs

Providing a tool to improve irrigation efficiency
Santa Barbara and San Luis Obispo Counties
ABOUT THE PROGRAM

Free on-site Mobile Lab services are available to Santa Barbara and Santa Maria County growers. Over 400 evaluations have been completed on over 50,000 acres.

To schedule an irrigation evaluation, call the Santa Barbara Conservation District at 805-123-4567.

THE EVALUATION

The Mobile Irrigation Lab comes right to your field! All you need to provide, if available is a layout of your irrigation system and information on your irrigation schedule and practice.

- Distribution Uniformity (DU): Evaluation of water distribution with a focus on uniformity and rate of application. Uniformity will increase irrigation efficiency.
- Uniformity: Estimation of seasonal recommendations related to uniformity and soil requirements for irrigation systems.
- Crop Water Use: Evaluation of growing season and the system design and operation.
- Water Quality: Measurements of salinity, electrical conductivity, and soil type along with water test results for micro-irrigation systems that allow calculation of total dissolved solids (TDS) and trace elements in irrigation water.

FOLLOW UP

After the evaluation, you will receive our observations and recommendations on system design, operation, and maintenance. The evaluation also provides specific irrigation scheduling recommendations. Detailed information on the use of the California Irrigation Management Information System (CIM) is available on request.

Interviews are conducted with each participant to discuss evaluation results and provide an opportunity for feedback. Training assistance is also offered to facilitate the implementation of recommended practices.

Distribution Uniformity by Irrigation System: Before and After System Evaluations

<table>
<thead>
<tr>
<th>System</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>45%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Distribution Uniformity Chart

![Distribution Uniformity Chart](chart.png)
BENEFICIOS DEL PROGRAMA

El manejo de conservación de recursos de agua mediante la evaluación de sistemas de riego es gratis para productores y regiones. Se propone la adopción de medidas de conservación de agua y se fortalece la participación de todos los productores para mejorar la eficiencia de los sistemas de riego.

La participación es voluntaria y las medidas resultan en un mejor aprovechamiento del agua. Los agricultores también pueden mejorar su productividad.

- Mejorar la calidad del cultivo
- Aumentar la productividad
- Disminuir los costos de energía
- Reducir el uso y las pérdidas de agua
- Disminuir los costos por pérdida de agua

EVALUACIONES DE SISTEMAS DE RIEGO

PARA USUARIOS DE AGUA AGRÍCOLA
INFORMACIÓN ACERCA DEL PROGRAMA

Los servicios del laboratorio móvil de riego se encuentran disponibles para los agricultores de los condados de Santa Barbara y San Luis Obispo. Se han realizado más de 800 evaluaciones sobre más de 70,000 acres en producción.

Para obtener una evaluación gratis de su sistema, llame al Distrito de Conservación de Cachuma al número (805) 928-9269 x 130.

LA EVALUACIÓN

El laboratorio móvil llega a su campo. Todo lo que usted tiene que hacer es tener un esquema de la localización de su sistema de riego y la información sobre los tiempos y la duración de los riegos.

○ La Uniformidad de Distribución (DU): Para lograr tener un sistema de riego altamente eficiente, lo primero que hay que hacer es regar en forma pareja y uniforme. La tasa de aplicación de agua del sistema también es calculada.

○ Eficiencia en el uso de la energía: Evaluación de la eficiencia del bombeo dependiendo del diseño y del manejo del sistema de riego.

○ Calidad del agua: Mediciones del pH, la conductividad eléctrica, el contenido de Nitrato (además de la dureza del agua y el contenido de hierro para sistemas de microaspersión), permiten calcular la cantidad total de sólidos disueltos y la fracción de lixiviación del agua de riego.

UNIFORMIDAD DE DISTRIBUCIÓN POR TIPO DE SISTEMA

Antes Después Antes Después

Goteo Todos los demás tipos micro-

SEGUIMIENTO

Después de la evaluación, se le entregarán los resultados de las observaciones y mediciones del campo, se le darán recomendaciones para mejorar el diseño, el manejo y el mantenimiento del sistema. La evaluación incluye además, sugerencias de cuándo y cuánto regar que se calculan específicamente para el área en donde se encuentra su rancho. Se le entregará además información detallada de cómo acceder a los datos del CIMIS (Sistema de Información del Manejo Riego en California).

Las revisiones se llevan a cabo personalmente con cada agricultor para permitir el intercambio de conocimiento e ideas, así explicar los resultados recomendaciones. Además contamos con la ayuda de ingenieros para la implementación de las prácticas recomendadas.
What is CIMIS?

CIMIS, the California Irrigation Management Information System, is a network of almost 100 computerized weather stations, located at key agricultural and urban sites throughout California. Six of these CIMIS stations are located in Santa Barbara County. The CIMIS program was developed by the California Department of Water Resources and the University of California to help agricultural growers and landscape managers irrigate more efficiently.

Why use CIMIS?

Improvements in agricultural and landscape irrigation efficiency can mean the difference between profit and loss to irrigation managers. Increased irrigation efficiency can reduce water, energy, labor, and fertilizer costs, as well as improve the health of the crop or landscape. Knowing when and how much to irrigate, however, can be difficult for irrigation managers to determine. CIMIS can help by providing data to assist irrigation managers with their scheduling decisions.
How does CIMIS work?

Weather data is collected from each CIMIS station, fed into a centralized computer database, and converted into reference evapotranspiration (ETo). ETo is the combined value of estimated daily pasture grass water use and soil evaporation.

Using crop coefficients and ETo, the water needs for a particular crop or turfgrass can be estimated. Crop coefficients have been developed for many vegetables, field crops, trees, vines, grasses, and landscape plants. Known crop coefficients are available in UC Cooperative Extension publications.

With this information, irrigators can establish an irrigation schedule. In many cases, proper scheduling can reduce the amount of water applied during a season, and at the same

How can I access CIMIS information?

There are three ways to access CIMIS ETo data for scheduling irrigations in Santa Barbara County.

1. You may access current ETo data by calling the toll-free CIMIS Hotline. The CIMIS Hotline for Santa Barbara County may be reached by dialing 1-888-CIMIS2U (1-888-246-4728). From the Santa Maria area, please call 928-9344.

The Hotline is updated each weekday by 9:00 am with ETo data for the previous seven days for each CIMIS weather station in Santa Barbara County.

There are five mailboxes on the Hotline:
1: Greeting and Information
2: CIMIS Overview
3: Data for Santa Maria & Guadalupe
4: Data for Santa Barbara & Goleta
5: Data for Santa Ynez & Cuyama

2. You may become a CIMIS user by acquiring a password to access the centralized CIMIS computer in Sacramento, using a computer modem. You can have a password assigned to you by calling 1-800-922-4647. Access to the CIMIS computer database is free of charge.

3. Through the internet, you can access ETo data for the last seven days, or monthly averages for the last eleven months. The internet address is http://wwwwdlwa.water.ca.gov/cgi-

Need help with CIMIS?

For more information, contact any of the following offices:

Cachuma Resource Conservation District
USDA Service Center
920 E. Stowell Road
Santa Maria, CA 93454
805-928-9269

University of California Cooperative Extension
North County: Warren Bendixen
624 West Foster Road
Santa Maria, CA 93455
(805) 934-6240

South County: Ben Faber
669 County Square Drive
Suite 100
Ventura, CA 93003-5401
805-645-1462

California Department Of Water Resources
Southern District Office
Sergio Fierro
P.O. Box 29068
Glendale, CA 91209-9068
Smart irrigation controllers automatically calculate a scientifically-based irrigation schedule based on local weather and your plant and soil type.

Once a month, turn on your sprinklers and check for leaks, overspray, and broken or misdirected sprinkler heads and emitters.

Select water-wise plants when re-landscaping with water-wise plants appropriate for our local climate. Search the plant database at sbwater.org.

Log on to sbwater.org for a customized irrigation schedule based on your zip code, soil and plants, and type of sprinklers. Adjust your sprinklers accordingly.

Select water-wise plants when re-landscaping with water-wise plants appropriate for our local climate. Search the plant database at sbwater.org.

Log on to sbwater.org for a customized irrigation schedule based on your zip code, soil and plants, and type of sprinklers. Adjust your sprinklers accordingly.
DON'T WASTE WATER!
TURN OFF THE FAUCET WHILE YOU BRUSH YOUR TEETH
DON'T OVERWATER PLANTS
WATER SERVED BY REQUEST ONLY

This restaurant supports conservation efforts of the Carpinteria Valley Water District.
Serving water only upon request eliminates unconsumed glasses of water and the water used to wash them.
For every glass of water not served, as much as 2 gallons of water is saved.

Thank you for supporting our water conservation efforts.

Carpinteria Valley Water District
www.cvwd.net
(805) 684-2816
Dear Neighbor:

California’s water is precious. Saving water is now more important than ever. In the spirit of neighbor helping neighbor, I wanted to alert you to the following:

☐ Your sprinklers are watering the pavement. Adjusting your sprinkler heads to prevent overspray and runoff will save precious water.

☐ Your sprinklers were on during the rain. Shutting off your sprinkler system when rain is predicted saves water. It’s typically not necessary to water for a week or more following a storm.

☐ You have a broken sprinkler, and/or your irrigation system is leaking. A broken sprinkler can waste 10 gallons per minute or 100 gallons in a 10-minute cycle. Making repairs right away is important to save water.

☐ Your sprinklers don’t need to run every day. Most landscapes do fine with only 2 or 3 days a week of watering, even less in the winter. To determine when to water, step on your grass. If it springs back, it doesn’t need water.

☐ Your sprinklers are on during the day. Watering only in the late evening or the early morning hours reduces water loss from evaporation and wind.

Save Our WATER®

See the reverse side for more outdoor conservation tips.

For more information visit:
www.sbwater.org

(805)684-2816 x 116
Carpinteria Valley Water District

LANDSCAPE

☐ Water your lawn only when it needs it. Water early in the morning or later in the evening when temperatures are cooler.
SAV: 25 gallons / each time you water

☐ Check your sprinkler system frequently and adjust sprinklers so only your lawn is watered and not the house, sidewalk, or street.
SAV: 15-12 gallons / each time you water

☐ Choose a water-efficient irrigation system such as drip irrigation for your trees, shrubs, and flowers.
SAV: 15 gallons / each time you water

☐ Water deeply but less frequently to create healthier and stronger landscapes.

☐ Put a layer of mulch around trees and plants to reduce evaporation and keep the soil cool. Organic mulch also improves the soil and prevents weeds.
SAV: 20-30 gallons / each time you water / 1,000 sq. ft.

☐ Plant drought-resistant trees and plants.
SAV: 30-60 gallons / each time you water / 1,000 sq. ft.

Information about evapotranspiration (ET) and weather based irrigation controllers is available at: http://www.cawcc.org and www.climis.water.ca.gov

CLEANUP

☐ Use a broom to clean driveways, sidewalks and patios.
SAV: 8-18 gallons / minute

☐ Wash cars/boats with a bucket, sponge and hose with self-closing nozzle.
SAV: 8-18 gallons / minute

For more information visit:
www.sbwater.org

(805)684-2816 x 116
Carpinteria Valley Water District
DISTRICT TO PARTICIPATE IN CACHUMA BOARD’S
UPPER REACH RELIABILITY PROJECT

Following Board review and discussion at its regularly scheduled Board meeting held on March 23, 2011, the Board approved a motion to direct Bob Lieberknecht, District representative to the Cachuma Operation and Maintenance Board (COMB), to take the necessary steps to support COMB’s proposed Upper Reach Reliability Project. This proposed Project includes several major improvements in the reach of the South Coast Conduit (SCC) from its beginning on the south coast side of the Tecolote Tunnel down as far as the Goleta Water District’s Corona Del Mar Treatment Plant. More than half of CVWD’s current water supply comes through the SCC from Lake Cachuma. In the photo below Directors Ducharme (left) and Orozco (center) can be seen inspecting and discussing the need for replacement of the south portal, the uppermost structure on the SCC with COMB General Manager Kate Rees (right) during a tour conducted on March 14, 2011.

The south portal is one of several structures along the 50 plus year old SCC that pose significant risk of failure due to factors of location, age, stress and corrosion from hydrogen sulfide gas originating in the Tecolote Tunnel. No net costs to the District for this Project are projected in the coming fiscal year, 2011-12. Depending on the Plan option, District expense will vary from between $244,000 to $122,000 in fiscal year 2012-2013, adding upward pressure on the water rates at that time. The District’s cost sharing percentage (12.2%) closely reflects the District’s recent 15 year average historical usage of the South Coast Conduit system. Other COMB member agencies participating in the Project will be the Goleta Water District, City of Santa Barbara and Montecito Water District.
Save Water and Money
With a Free Water Check-up!

Check-ups include:
- evaluation of household leaks
- measurement of shower and faucet flow rates
- measurement of toilet flush volumes
- useful conservation tips

The District provides free low-flow faucet aerators and showerheads to replace existing high-volume fixtures.

To schedule an appointment, contact Rhonda
(805) 684-2816 ext. 116
rhonda@cvwd.net

CASH FOR MAKING YOUR GARDEN MORE WATER WISE!

 Rebates Available on 50% of the cost of irrigation equipment, smart irrigation controllers, water-wise plants, and mulch.

Projects must be approved in advance.

Participating South Coast Water Providers:
Goleta Water District, City of Santa Barbara,
Carpinteria Valley Water District

Board of Directors Meetings

Regular Board meetings may now be held on the second and fourth Wednesday of every month at 5:30 pm at Carpinteria City Hall, 5775 Carpinteria Avenue. The Board may also hold regular Board meetings other Wednesdays of the month at 5:30 pm at the District Offices at 1301 Santa Ynez Avenue.
The Ortega Reservoir shared by Montecito Water District and Carpinteria Valley Water District (CVWD) is undergoing repairs on leaking concrete joints and minor corrosion on valves. Below are photos inside of the reservoir. The work is being done during the winter months so that the impact of the reservoir being offline to water supply reliability is minimized. The contractor’s schedule states a completion date of April 15, 2011. This should prevent any water shortages or low pressure from occurring in CVWD’s water system. However, in the event weather conditions change and higher demands occur the District may call for reductions in non essential water use during the remainder of the project.

Pictured left, Director Matt Roberts inspects a valve corroded with rust which can also be seen in the picture on the right.
Native Plant Garden Tour

Landscape irrigation accounts for a great portion of residential water use in Carpinteria. CVWD encourages the use of efficient landscape irrigation practices such as planting California native plants or other low water using plants in Carpinteria gardens.

California native plants will be highlighted in gardens from Goleta to Thousand Oaks on the Native Plant Garden tour sponsored by the Channel Islands Chapter of the California Native Plants Society and the Santa Barbara Botanic Garden.

Two gardens located in Carpinteria will be featured on the tour. The self-guided tour offers maps to each location and hosts at each garden to answer your questions.

Native Plant Garden Tour

April 16, 2011
10 a.m. - 4 p.m.

Cost: $15 for members of either organization
$25 for non-members

For more information, call (805) 682-4726 or visit www.cnps.org or www.sbbg.org

Board of Directors Meetings

The Board of Directors has approved a new Board meeting place and schedule. Regular Board meetings may now be held on the second and fourth Wednesday of every month at 5:30 pm at Carpinteria City Hall, 5775 Carpinteria Avenue. The Board may also hold regular Board meetings other Wednesdays of the month at 5:30 pm at the District Offices at 1301 Santa Ynez Avenue.
Most sprinkler systems go on early in the morning when you are still sleeping. About once a month it’s a good idea to turn your sprinklers on and check for leaks, overspray, and broken or misdirected sprinkler heads and emitters.

Whether you are putting in a new landscape or slowly changing the current landscaping at your home, select water-wise plants that are appropriate for our local climate. A searchable water-wise plant database is available at sbwater.org.
Our garden can be a mystery. The average person uses twice the amount of water needed to keep plants healthy. However, simple adjustments can make a big difference.

Here are easy ways to save water outdoors:

- **Use the watering calculator.**

 An easy way to determine how much and how often to water your garden is by using the landscape watering calculator at sbwater.org. Just enter your zip code, type of soil, plants and sprinklers into the watering calculator and it will provide you with a schedule. Then adjust your irrigation controller accordingly.

- **Change your sprinkler timer battery.**

 If your irrigation controller’s backup battery is dead, a power outage will cause it to reset to the default settings, watering about twice as much as necessary. Replace your battery as needed, at least once a year.

- **Adjust sprinkler pressure.**

 Pressure that is too high causes the water exiting the sprinkler to turn to mist, which can be blown away by even just a gentle breeze. Install a pressure regulator to increase the efficiency of your sprinklers.

- **Change your watering schedule.**

 On many irrigation controllers today, there is a feature called “water budget”, or seasonal adjust, which lets you easily change your watering schedule as the weather changes. Locate the water budget feature on your controller, then set the water budget to the weekly watering index. For your weekly watering index visit sbwater.org.
COMMERICAL REBATE PROGRAM

REBATES INCREASED FOR A LIMITED TIME!
SAVE WATER
SAVE A BUCK
in Santa Barbara County

Install High Efficiency Toilets, Urinals and Washing Machines and
SLASH YOUR WATER AND ENERGY BILLS!
UPGRADE YOUR BUSINESS WITH NEW EQUIPMENT!
LOWER YOUR MAINTENANCE!
We'll even give you rebate dollars

ULTRA LOW FLUSH TOILETS or High Efficiency Toilets—only 1.5 gallon per flush!

- $75 - $50 REBATE per fixture*
- $150 - $300

SAVE ABOUT $60 - $100 a year in water and sewer bill savings for each fixture installed

ULTRA LOW FLUSH & WATERLESS URINALS
- $150 REBATE per fixture
- $300

SAVE ABOUT $60 - $100 a year in water and sewer bill savings

HIGH EFFICIENCY CLOTHES WASHERS
- $100 REBATE per HEW
- $350

High Efficiency Washers (HEWs) pay for themselves and...
USE 50% LESS ENERGY than traditional models
LOWER WATER, SEWER AND ENERGY COSTS associated with washing by 35-50%
SAVE YOU ABOUT $1000 in reduced operating costs over the life of the machine as compared to traditional models

CALL 1-800-215-7559
A telephone representative will verify that funds are still available. Rebates are subject to available funds.
A telephone representative will aid in verifying your eligibility, including product make and model numbers prior to your purchase.

PURCHASE AND INSTALL qualifying models of toilets, urinals, and/or clothes washers.

FILL OUT THE REBATE APPLICATION on the back side of this brochure. Be sure to include your original sales receipt(s).

MAIL COMPLETED APPLICATION TO:
Rebate Program, 123 E. Anapamu Street, Suite 240
Santa Barbara, CA 93101

- Rebate customers will be handled on a first come, first served basis.
- Program runs January 1, 2004-December 31, 2007, as funding is available.
- Customer may be required to have an on-site inspection.

For more information please call 1-800-215-7559
Program is coordinated by the Santa Barbara County Water Agency. Visit our website at www.sbwater.org.
Commercial Rebate Application
Please complete numbers 1 through 8.
Please enclose the original sales receipts with your application.

1. Please check your Water Utility listed below:
 - City of Santa Barbara
 - Montecito Water District
 - City of Santa Maria
 - Goleta Water District
 - Carpinteria Valley Water District
 - City of Lompoc*

2. Your Business Service Address Information
 - Your Business Name
 - Street Address
 - Apt/Unit #
 - City
 - State Zip Code
 - Do you own or rent the property? Own Rent
 - What type of Business do you operate?

3. Water Bill Account Number
 - Name on the Account
 - Account Holder's telephone #
 - Your telephone #
 - Water Utility Account Number

4. Your Mailing Address
 (All communication including check will be sent to this address)
 - Street Address
 - Apt/Unit #
 - City
 - State Zip Code

ULTRA LOW FLUSH TOILETS AND URINALS

5. If your business is a RESTAURANT, FOOD STORE or WHOLESALE ESTABLISHMENT, please complete the following section...

<p>| Tank-type Ultra Low Flush Toilets Installed: | Flushometer Ultra Low Flush Toilets Installed: |</p>
<table>
<thead>
<tr>
<th>Model of Toilet(s)</th>
<th># of Toilets</th>
<th>Rebate $ per Toilet</th>
<th>Subtotal Rebate $</th>
<th>Toilet Manufacturer</th>
<th>Model of Toilet(s)</th>
<th># of Toilets</th>
<th>Rebate $ per Toilet</th>
<th>Subtotal Rebate $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td></td>
<td></td>
<td></td>
<td>Manufacturer</td>
<td>Model of Toilet(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 TOTAL:

<table>
<thead>
<tr>
<th>Urinals Installed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of Urinal(s)</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rebate $ per Urinal</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

6. ALL OTHER BUSINESSES and SCHOOLS, please complete the following section...

<p>| Tank-type Ultra Low Flush Toilets Installed: |</p>
<table>
<thead>
<tr>
<th>Toilet Manufacturer</th>
<th>Model of Toilet(s)</th>
<th># of Toilets</th>
<th>Rebate $ per Toilet</th>
<th>Subtotal Rebate $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Model of Toilet(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 TOTAL:

<p>| Flushometer Ultra Low Flush Toilets Installed: |</p>
<table>
<thead>
<tr>
<th>Toilet Manufacturer</th>
<th>Model of Toilet(s)</th>
<th># of Toilets</th>
<th>Rebate $ per Toilet</th>
<th>Subtotal Rebate $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Model of Toilet(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 TOTAL:

<table>
<thead>
<tr>
<th>Urinals Installed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of Urinal(s)</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rebate $ per Urinal</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

 TOTAL:

HIGH EFFICIENCY CLOTHES WASHERS

7. ALL BUSINESS TYPES, please complete the following section...

<p>| Clothes Washers Installed: |</p>
<table>
<thead>
<tr>
<th>Washer Manufacturer</th>
<th>Model of Washer(s)</th>
<th># of Washers at this manufacturer</th>
<th>Rebate $ per Washer</th>
<th>Subtotal Rebate $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 TOTAL:

<table>
<thead>
<tr>
<th>MUST BE CEE CERTIFIED</th>
<th>GRAND TOTAL All Rebates: $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Signature required for this rebate program

 "I certify that the information contained on this application is true and correct, and that I have not previously participated in a local ULFT rebate program. I understand that rebate dollars are for customers of participating water utilities and subject to available funds.

 All toilets being submitted for rebates are 1.6 gallons or less and replacing non-1.6 gallon models. All toilets must be of commercial grade with elongated bowls and open front seats. The seat height must be between 17"-19" from the floor. The flush handle must be on the side of the fixture with the most space.

 All urinals being submitted for rebates are 1 gallon or less and replacing non-one gallon urinals.

 All washers being submitted for rebates are on the CEE approved washer list (www.devwater.org).

 I agree to the program requirements as stated on this application. I understand that my site may be subject to inspection as a requirement for rebate payment."

 Name (print) __________________________
 Signature ____________________________
 Date ____________ E-mail __________________

Mail Application & Receipts to:
Rebate Program, 123 E. Anapamu Street, Suite 240
Santa Barbara, CA 93101
Program Hotline: 1-800-215-7559
Attention Business Owners

Highest Rebates YET!

If you're thinking of replacing your old washing machines, toilets, or urinals with HIGH PERFORMANCE, MONEY SAVING APPLIANCES, now is the time!

LIMITED TIME ONLY!!! UP TO $350 BACK!!

- Buy a high efficiency toilet, urinal, or washing machine, and receive the following rebates:
 - High Efficiency Toilets $150-$300
 - Waterless or Low-Flush Urinals $300
 - High Efficiency Clothes Washers $350

- High efficiency washers can save up to 50% of water and 50% energy costs and are easier on clothes!

- High Efficiency Toilets and Low-Flush Urinals can save you $60-$100 per fixture per year on water bills and many High Efficiency toilets out perform standard models!

- Commercial, Industrial, and Institutional water customers only

- Visit www.sbwater.org/CIIRebateProgram.htm or call 1-800-215-7559 for rebate requirements

- www.ﬂexyourpower.org to see if you're eligible for other rebates
Groundwater Model Project Status Report

At the September 8th Board of Directors meeting, Robert Marks of Pueblo Water Resources presented the status and projected schedule of the District’s Hydrogeologic Update and Groundwater Model Project. The project funded primarily with a grant of about $248,000 from the California Department of Water Resources will give the District the capability to model and make informed decisions about the Carpinteria Groundwater Basin.

The Hydrogeologic update consisted of data compilation and review, information about the basin structure, characterization of aquifer hydraulic parameters, water level conditions, hydrologic budget and water balance.

The Groundwater Model, as a basin management tool, utilizes the latest subsurface and water balance information. It simulates the occurrence and movement of groundwater in the basin. In addition, the Model will allow District staff to assess potential impacts of increases in groundwater pumping, evaluate basin response to long-term drought and simulate alternative basin management scenarios.

The completion of this project, scheduled for May 2011, coincides with the District’s completion of recent large groundwater related improvements such as Headquarters Well, El Carro Well and Foot-hill Storage Tank, further enabling more efficient use of groundwater and reducing overdependence on imported surface water.

Use of groundwater is a key to the District’s meeting all current and future federal and state drinking water standards.

At left, is a cross section of the Carpinteria Groundwater Basin. The illustration is courtesy of Geotechnical Consultants.

Columbus Day: The District office will be open for business Monday, October 11th.

El Distrito es bilingue. Favor de llamar (805) 684-2816 con cualquier pregunta sobre su cuenta o el uso de agua, estamos aquí para asistirlos.
Water Meter Accessibility

The District’s water meters are read on a monthly basis, **Monday through Friday, 7 a.m. to 7 p.m. and Saturday, 7 a.m. to 3 p.m.** Please keep your water meter accessible so that a quick and accurate read can be taken. Should an emergency arise it is important that staff can get to the meters for repairs. Below are ways to keep the meters clear for easy access.

Trees, shrubs, plantings
- Keep trees, shrubs and planting around the meter box trimmed.
- Please minimize plants in the area of the meter box to avoid damage to them from foot traffic.

Pets
- Please keep your pets, especially dogs confined in an area away from the meter or provide protected access to the meter to prevent interference from your pet.

Objects that cover or block you meter
- Make sure that no objects are placed so that they cover or block access to the meter box. Items that have been found blocking water meters include cars, trailers, garbage and recycling containers, construction equipment or supplies, landscape bark or gravel.

Locked Gates
- If your meter is located behind a gate that is normally kept locked, please contact us to arrange access.

Please call the District (805) 684-2816 if you have any questions or concerns.

Adjust Landscape Watering

The fall season is upon us and it is a good time to adjust automatic irrigation controllers to reflect the change in weather. The Landscape Watering Calculator and the Watering Index are two good resources found at www.sbwater.org. to help you use water efficiently.

Landscape Watering Calculator
An on-line program in which you answer questions about your landscape and watering system in order to develop a weekly watering schedule. To use the program, visit **www.sbwater.org/Water_Calc_Map.html**

Weekly Watering Index
The Watering Index can be found on the home page of sbwater.org. It allows automatic irrigation controllers with a water budget adjustment feature to be easily modified. For more information, visit **www.sbwater.org/WateringIndex.htm**

Board of Directors Meetings

The Board of Directors may hold regular Board meetings on any Wednesday at 4 p.m. at the District Offices at 1301 Santa Ynez Avenue, except on the second Wednesday of the month. The second Wednesday meeting is held at 5:30 p.m. at Carpinteria City Hall, 5775 Carpinteria Avenue.

To find out about specific meeting dates, contact the District at 684-2816 x104 or go to **www.cvwd.net**.
Laundry to Landscape Graywater Systems

In response to the state-wide drought, California recently adopted new code language for residential graywater reuse that took effect August 4th. Local building permits are no longer necessary for systems connected to clotheswashers and single-fixture systems (fixtures to a common drain) that reuses water for landscaping. This change makes it a lot easier and less costly for homeowners to install graywater systems to water their landscape, reduce their water consumption as well as decrease wastewater treatment.

There are still, however, requirements that must be met in order to protect public health.

Some of the requirements are listed here:

- The system must have a diverter valve that can route graywater to the sanitary sewer system if necessary.
- Water from kitchen sinks or used to wash diapers or other infectious garments shall not be used.
- The graywater can be discharged above ground, but the discharge point must be covered by mulch.
- The water can’t pond or run off of your property onto a neighbor’s property or into storm drains. It must stay on the property from which it is generated.
- Graywater cannot be used in spray irrigation systems.
- It must have an air-gap or backflow prevention device to protect the potable water supply.
- Graywater is not to be used for root crops or edible portions of food crops.

For the full list of requirements, visit the What’s New section of our website www.cvwd.net

El Carro Well Project - Update

The El Carro Well and Pipelines Project, scheduled to be started this summer has been delayed due to a property lease agreement negotiation that has not yet been resolved. The El Carro Well half of the Project is the drilling of a replacement well located at the existing El Carro Well site. The new construction window for this half of the project is summer of 2010. In the meantime the District will focus efforts on completing the other half of the Project - the Central Zone Pipeline Project. The project is currently being designed. Construction is expected to begin in the spring of 2010. The alignment of pipeline work will be mostly along sections of El Carro Lane and Santa Monica Road. Affected customers will be notified in early 2010. All customers are welcome to participate in the planning process. If you have any questions or comments please contact Robert McDonald, CVWD District Engineer at 805-684-2816 ext. 107.
“Water Served Upon Request”
Restaurant Table Tents

A number of restaurants in Carpinteria are using “Water Served Upon Request” table tents with great success. Some of the restaurants using the table tents include Jack’s Bagels, Gianfranco’s Trattoria, IHOP, The Worker Bee, and Cajun Kitchen. Jack’s Bagels owner, Doralee Jacobson, was an initial supporter and advocate for the table tents. The owners of Gianfranco’s Trattoria have reported that, “Since we began using these notices we are experiencing savings in not only labor (eliminating washing un-used glasses) but also savings in water usage and thereby water costs.”

To participate in the District’s Water Served Upon Request Program, please contact Rhonda at (805) 684-2816 x 116 or email rhonda@cvwd.net.

Rain Barrel Sale @ Cost: $50
Saturday, September 26, 2009, 9 am to 4 pm
SBCC’s Shoreline Parking Lot 3

Help Conserve Water Resources.
Reduce Runoff, Prevent Water Pollution.
Harvest Rainwater for Your Garden!

Container is 55 gallons, eco-friendly, is easy to install and all accessories are included. Valued at $120, you get it for $50!

The sale, sponsored by the SB County Water Agency and Project Clean Water will be held at the corner of Shoreline and Loma Alta Drive.

Cash or Check Only!
For more information, call (805) 568-3546

Board of Directors Meetings

The Board Meetings for the month of September: Wednesday, September 16 at 4 p.m. in the District Boardroom, 1301 Santa Ynez Avenue.

A special joint Board meeting of the Cachuma Operation and Maintenance Board and Carpinteria Valley Water District will be held at 4 p.m. Monday, September 21st in the District Boardroom.

Effective October 2009, Board meetings scheduled the second Wednesday of the month will be held at Carpinteria City Hall, 5775 Carpinteria Avenue 5:30 p.m.

Visit our website www.cvwd.net for new and updated information.
Carpinteria Valley Water District has 3 sources of supply for water:

1) Carpinteria Groundwater Basin (water produced by District wells)
2) Cachuma Project (Santa Ynez River water stored behind Bradbury Dam)
3) State Water Project (water from Northern California rivers and streams)

Carpinteria Groundwater Basin

Water Quality: Excellent, but needs filtration for high levels of manganese. (There is normally no fluctuation in the quality of groundwater.)

Water Reliability: Excellent due to recent rainfall and groundwater Basin replenishment; but also Not Good due to failure of two major District wells requiring replacement and one major well now undergoing repairs.

Cachuma Project

Water Quality: Good, but below average due to Zaca Fire sediment run-off during recent rainfall. Related to Zaca fire impacts, the District is experiencing increased costs to effectively treat Lake Cachuma water this year. The Cachuma source of water continues to be the most problematic for the District in meeting current and soon to be enforced safe drinking water standards set by the U.S Environmental Protection Agency and the California Department of Public Health.

Water Reliability: Excellent due to the recent rainfall. Lake Cachuma has filled and spilled this year.

State Water Project

Water Quality: Excellent, but requires increased seasonal treatment due to recent rainfall.

Water Reliability: Poor. Replenishment of storage in the Northern California system is below expectations year. A recent State Court decision to protect Delta smelt has resulted in restrictions on deliveries and flows through the Delta. Project allocation to water contractors is at 35%.

April Board of Directors Meetings

The Board Meetings for the month of April will be:

- **Wednesday** April 9 4 pm District Boardroom 1301 Santa Ynez Ave
- **Wednesday** April 23 4 pm District Boardroom 1301 Santa Ynez Ave

El Distrito es bilingue. Favor de llamar (805) 684-2816 con cualquier pregunta sobre su cuenta o el uso de agua, estamos aquí para asistirlos.
Earth Day 2008

“Reduce Your Eco-Footprint”
2008 South Coast Earth Day Festival
Sunday, April 20th
10 am to 5:30 pm
Santa Barbara County Courthouse
Sunken Gardens

The Earth Day festival features a children's activity area, live music from the solar-powered stage, free bicycle check-ups, an "energy village", presentations of new and upcoming technologies by environmental entrepreneurs and innovators.

Landscape Water Conservation Tool

The MP Rotator is a multi-stream rotor that is similar in size to a traditional landscape spray sprinkler. It will fit any Hunter, Rainbird or Toro pop up body, transforming it into a highly efficient, low precipitation rate sprinkler. The MP Rotator runs twice as long traditional spray sprinklers but uses 30% less water because it applies water more slowly and evenly.

Installers find the MP Rotator saves time and water with quick retrofit capabilities to current spray head systems in lawn and shrub applications. Heads can be spaced as close as 8’ and as far as 30’; it can also water strips as narrow as 4’ wide. All MP Rotator sprinklers can be combined on the same zone for greater design and installation flexibility, allowing coverage to tight corners and wide spaces with only one valve. The MP Rotator provides maximum uniformity because it automatically adjusts the water flow when the arc pattern and radius distance are adjusted.

![Easy Arc Adjustment](image1.png)
![Easy Radius Adjustment](image2.png)

Please contact Rhonda at (805) 684-2816 for additional information regarding the MP Rotator Sprinkler.

Green Gardener Program

The Green Gardener Program trains gardeners in resource-efficient landscaping practices. Green Gardeners will be included on a list provided to homeowners looking for “green” landscaping services. Bilingual Instruction available. Classes begin April 9, 2008

For more info, call 568-3541 or visit www.greengardener.org

Visit our website at www.cvwd.net for new and updated information.
Appendix M

UWMP Checklist
Appendix O
UWMP Checklist Arranged by Subject

<table>
<thead>
<tr>
<th>CWC Section</th>
<th>UWMP Requirement</th>
<th>Subject</th>
<th>DWR Guidebook Location</th>
<th>CVWD UWMP Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10620(b)</td>
<td>Every person that becomes an urban water supplier shall adopt an urban water management plan within one year after it has become an urban water supplier.</td>
<td>Plan Preparation</td>
<td>Section 2.1</td>
<td>NA</td>
</tr>
<tr>
<td>10620(d)(2)</td>
<td>Coordinate the preparation of its plan with other appropriate agencies in the area, including other water suppliers that share a common source, water management agencies, and relevant public agencies, to the extent practicable.</td>
<td>Plan Preparation</td>
<td>Section 2.5.2</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10642</td>
<td>Provide supporting documentation that the water supplier has encouraged active involvement of diverse social, cultural, and economic elements of the population within the service area prior to and during the preparation of the plan.</td>
<td>Plan Preparation</td>
<td>Section 2.5.2</td>
<td>Section 1.6, Appendix C</td>
</tr>
<tr>
<td>10631(a)</td>
<td>Describe the water supplier service area.</td>
<td>System Description</td>
<td>Section 3.1</td>
<td>Section 2.2</td>
</tr>
<tr>
<td>10631(a)</td>
<td>Describe the climate of the service area of the supplier.</td>
<td>System Description</td>
<td>Section 3.3</td>
<td>Section 2.5</td>
</tr>
<tr>
<td>10631(a)</td>
<td>Provide population projections for 2020, 2025, 2030, and 2035.</td>
<td>System Description</td>
<td>Section 3.4</td>
<td>Section 2.6</td>
</tr>
<tr>
<td>10631(a)</td>
<td>Describe other demographic factors affecting the supplier’s water management planning.</td>
<td>System Description</td>
<td>Section 3.4</td>
<td>Section 2.6</td>
</tr>
<tr>
<td>10631(a)</td>
<td>Indicate the current population of the service area.</td>
<td>System Description and Baselines and Targets</td>
<td>Sections 3.4 and 5.4</td>
<td>Section 2.6</td>
</tr>
<tr>
<td>10631(e)(1)</td>
<td>Quantify past, current, and projected water use, identifying the uses among water use sectors.</td>
<td>System Water Use</td>
<td>Section 4.2</td>
<td>Sections 3.2 and 3.3</td>
</tr>
<tr>
<td>10631(e)(3)(A)</td>
<td>Report the distribution system water loss for the most recent 12-month period available.</td>
<td>System Water Use</td>
<td>Section 4.3</td>
<td>Section 3.2</td>
</tr>
<tr>
<td>10631.1(a)</td>
<td>Include projected water use needed for lower income housing projected in the service area of the supplier.</td>
<td>System Water Use</td>
<td>Section 4.5</td>
<td>Section 3.2</td>
</tr>
<tr>
<td>10608.20(b)</td>
<td>Retail suppliers shall adopt a 2020 water use target using one of four methods.</td>
<td>Baselines and Targets</td>
<td>Section 5.7 and App E</td>
<td>Section 3.4</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Baselines and Targets</td>
<td>Chapter and App</td>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>10608.20(e)</td>
<td>Retail suppliers shall provide baseline daily per capita water use, urban water use target, interim urban water use target, and compliance daily per capita water use, along with the bases for determining those estimates, including references to supporting data.</td>
<td>Baselines and Targets</td>
<td>Chapter 5 and App E</td>
<td>Section 3.4</td>
</tr>
<tr>
<td>10608.22</td>
<td>Retail suppliers’ per capita daily water use reduction shall be no less than 5 percent of base daily per capita water use of the 5 year baseline. This does not apply if the suppliers base GPCD is at or below 100.</td>
<td>Baselines and Targets</td>
<td>Section 5.7.2</td>
<td>Section 3.4</td>
</tr>
<tr>
<td>10608.24(a)</td>
<td>Retail suppliers shall meet their interim target by December 31, 2015.</td>
<td>Baselines and Targets</td>
<td>Section 5.8 and App E</td>
<td>Section 3.4</td>
</tr>
<tr>
<td>10608.24(d)(2)</td>
<td>If the retail supplier adjusts its compliance GPCD using weather normalization, economic adjustment, or extraordinary events, it shall provide the basis for, and data supporting the adjustment.</td>
<td>Baselines and Targets</td>
<td>Section 5.8.2</td>
<td>NA</td>
</tr>
<tr>
<td>10608.36</td>
<td>Wholesale suppliers shall include an assessment of present and proposed future measures, programs, and policies to help their retail water suppliers achieve targeted water use reductions.</td>
<td>Baselines and Targets</td>
<td>Section 5.1</td>
<td>NA</td>
</tr>
<tr>
<td>10608.40</td>
<td>Retail suppliers shall report on their progress in meeting their water use targets. The data shall be reported using a standardized form.</td>
<td>Baselines and Targets</td>
<td>Section 5.8 and App E</td>
<td>Section 3.4</td>
</tr>
<tr>
<td>10631(b)</td>
<td>Identify and quantify the existing and planned sources of water available for 2015, 2020, 2025, 2030, and 2035.</td>
<td>System Supplies</td>
<td>Chapter 6</td>
<td>Sections 4.2 and 4.4</td>
</tr>
<tr>
<td>10631(b)</td>
<td>Indicate whether groundwater is an existing or planned source of water available to the supplier.</td>
<td>System Supplies</td>
<td>Section 6.2</td>
<td>Section 4.2</td>
</tr>
<tr>
<td>10631(b)(1)</td>
<td>Indicate whether a groundwater management plan has been adopted by the water supplier or if there is any other specific authorization for groundwater management. Include a copy of the plan or authorization.</td>
<td>System Supplies</td>
<td>Section 6.2.2</td>
<td>Section 4.2</td>
</tr>
<tr>
<td>10631(b)(2)</td>
<td>Describe the groundwater basin.</td>
<td>System Supplies</td>
<td>Section 6.2.1</td>
<td>Section 4.2</td>
</tr>
<tr>
<td>10631(b)(2)</td>
<td>Indicate if the basin has been adjudicated and include a copy of the court order or decree and a description of the amount of water the supplier has the legal right to pump.</td>
<td>System Supplies</td>
<td>Section 6.2.2</td>
<td>NA</td>
</tr>
<tr>
<td>10631(b)(2)</td>
<td>For unadjudicated basins, indicate whether or not the department has identified the basin as overdrafted, or projected to become overdrafted. Describe efforts by the supplier</td>
<td>System Supplies</td>
<td>Section 6.2.3</td>
<td>Section 4.2</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Overview</td>
<td>Related Sections</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>10631(b)(3)</td>
<td>Provide a detailed description and analysis of the location, amount, and sufficiency of groundwater pumped by the urban water supplier for the past five years</td>
<td>System Supplies</td>
<td>Section 6.2.4, Section 4.2</td>
<td></td>
</tr>
<tr>
<td>10631(b)(4)</td>
<td>Provide a detailed description and analysis of the amount and location of groundwater that is projected to be pumped.</td>
<td>System Supplies</td>
<td>Sections 6.2 and 6.9, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10631(d)</td>
<td>Describe the opportunities for exchanges or transfers of water on a short-term or long-term basis.</td>
<td>System Supplies</td>
<td>Section 6.7, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10631(g)</td>
<td>Describe the expected future water supply projects and programs that may be undertaken by the water supplier to address water supply reliability in average, single-dry, and multiple-dry years.</td>
<td>System Supplies</td>
<td>Section 6.8, Sections 4.4 and 5.4</td>
<td></td>
</tr>
<tr>
<td>10631(h)</td>
<td>Describe desalinated water project opportunities for long-term supply.</td>
<td>System Supplies</td>
<td>Section 6.6, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10631(j)</td>
<td>Retail suppliers will include documentation that they have provided their wholesale supplier(s) – if any - with water use projections from that source.</td>
<td>System Supplies</td>
<td>Section 2.5.1, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10631(j)</td>
<td>Wholesale suppliers will include documentation that they have provided their urban water suppliers with identification and quantification of the existing and planned sources of water available from the wholesale to the urban supplier during various water year types.</td>
<td>System Supplies</td>
<td>Section 2.5.1, NA</td>
<td></td>
</tr>
<tr>
<td>10633</td>
<td>For wastewater and recycled water, coordinate with local water, wastewater, groundwater, and planning agencies that operate within the supplier's service area.</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.1, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10633(a)</td>
<td>Describe the wastewater collection and treatment systems in the supplier's service area. Include quantification of the amount of wastewater collected and treated and the methods of wastewater disposal.</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.2, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10633(b)</td>
<td>Describe the quantity of treated wastewater that meets recycled water standards, is being discharged, and is otherwise available for use in a recycled water project.</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.2.2, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10633(c)</td>
<td>Describe the recycled water currently being used in the supplier's service area.</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.3 and 6.5.4, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>10633(d)</td>
<td>Describe and quantify the potential uses of recycled water and provide a determination</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.4, Section 4.4</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.4</td>
<td>Section 4.4</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>10633(e)</td>
<td>Describe the projected use of recycled water within the supplier's service area at the end of 5, 10, 15, and 20 years, and a description of the actual use of recycled water in comparison to uses previously projected.</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.5</td>
<td>Section 4.4</td>
</tr>
<tr>
<td>10633(f)</td>
<td>Describe the actions which may be taken to encourage the use of recycled water and the projected results of these actions in terms of acre-feet of recycled water used per year.</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.5</td>
<td>Section 4.4</td>
</tr>
<tr>
<td>10633(g)</td>
<td>Provide a plan for optimizing the use of recycled water in the supplier's service area.</td>
<td>System Supplies (Recycled Water)</td>
<td>Section 6.5.5</td>
<td>Section 4.4</td>
</tr>
<tr>
<td>10620(f)</td>
<td>Describe water management tools and options to maximize resources and minimize the need to import water from other regions.</td>
<td>Water Supply Reliability Assessment</td>
<td>Section 7.4</td>
<td>Sections 4.4, 6.2, and 6.4</td>
</tr>
<tr>
<td>10631(c)(1)</td>
<td>Describe the reliability of the water supply and vulnerability to seasonal or climatic shortage.</td>
<td>Water Supply Reliability Assessment</td>
<td>Section 7.1</td>
<td>Section 5.4</td>
</tr>
<tr>
<td>10631(c)(1)</td>
<td>Provide data for an average water year, a single dry water year, and multiple dry water years</td>
<td>Water Supply Reliability Assessment</td>
<td>Section 7.2</td>
<td>Section 5.4</td>
</tr>
<tr>
<td>10631(c)(2)</td>
<td>For any water source that may not be available at a consistent level of use, describe plans to supplement or replace that source.</td>
<td>Water Supply Reliability Assessment</td>
<td>Section 7.1</td>
<td>Section 4.4</td>
</tr>
<tr>
<td>10634</td>
<td>Provide information on the quality of existing sources of water available to the supplier and the manner in which water quality affects water management strategies and supply reliability.</td>
<td>Water Supply Reliability Assessment</td>
<td>Section 7.1</td>
<td>Section 4.3</td>
</tr>
<tr>
<td>10635(a)</td>
<td>Assess the water supply reliability during normal, dry, and multiple dry water years by comparing the total water supply sources available to the water supplier with the total projected water use over the next 20 years.</td>
<td>Water Supply Reliability Assessment</td>
<td>Section 7.3</td>
<td>Section 5.4</td>
</tr>
<tr>
<td>10632(a) and 10632(a)(1)</td>
<td>Provide an urban water shortage contingency analysis that specifies stages of action and an outline of specific water supply conditions at each stage.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.1</td>
<td>Section 6.4</td>
</tr>
<tr>
<td>10632(a)(2)</td>
<td>Provide an estimate of the minimum water supply available during each of the next three water years based on the driest threethree-year historic sequence for the agency.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.9</td>
<td>Section 5.5</td>
</tr>
<tr>
<td>10632(a)(3)</td>
<td>Identify actions to be undertaken by the urban water supplier in case of a catastrophic interruption of water supplies.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.8</td>
<td>Sections 6.3 and 6.4</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 1</td>
<td>Section 2</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>10632(a)(4)</td>
<td>Identify mandatory prohibitions against specific water use practices during water shortages.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.2</td>
<td>Section 2.2</td>
</tr>
<tr>
<td>10632(a)(5)</td>
<td>Specify consumption reduction methods in the most restrictive stages.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.4</td>
<td>Section 2.4</td>
</tr>
<tr>
<td>10632(a)(6)</td>
<td>Indicated penalties or charges for excessive use, where applicable.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.3</td>
<td>Section 2.3</td>
</tr>
<tr>
<td>10632(a)(7)</td>
<td>Provide an analysis of the impacts of each of the actions and conditions in the water shortage contingency analysis on the revenues and expenditures of the urban water supplier, and proposed measures to overcome those impacts.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.6</td>
<td>Section 2.4</td>
</tr>
<tr>
<td>10632(a)(8)</td>
<td>Provide a draft water shortage contingency resolution or ordinance.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.7</td>
<td>Section 2.4</td>
</tr>
<tr>
<td>10632(a)(9)</td>
<td>Indicate a mechanism for determining actual reductions in water use pursuant to the water shortage contingency analysis.</td>
<td>Water Shortage Contingency Planning</td>
<td>Section 8.5</td>
<td>Section 2.4</td>
</tr>
<tr>
<td>10631(f)(1)</td>
<td>Retail suppliers shall provide a description of the nature and extent of each demand management measure implemented over the past five years. The description will address specific measures listed in code.</td>
<td>Demand Management Measures</td>
<td>Sections 9.2 and 9.3</td>
<td>Section 7.3</td>
</tr>
<tr>
<td>10631(f)(2)</td>
<td>Wholesale suppliers shall describe specific demand management measures listed in code, their distribution system asset management program, and supplier assistance program.</td>
<td>Demand Management Measures</td>
<td>Sections 9.1 and 9.3</td>
<td>NA</td>
</tr>
<tr>
<td>10631(i)</td>
<td>CUWCC members may submit their 2013-2014 CUWCC BMP annual reports in lieu of, or in addition to, describing the DMM implementation in their UVMPs. This option is only allowable if the supplier has been found to be in full compliance with the CUWCC MOU.</td>
<td>Demand Management Measures</td>
<td>Section 9.5</td>
<td>Section 7.2</td>
</tr>
<tr>
<td>10608.26(a)</td>
<td>Retail suppliers shall conduct a public hearing to discuss adoption, implementation, and economic impact of water use targets.</td>
<td>Plan Adoption, Submittal, and Implementation</td>
<td>Section 10.3</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10621(b)</td>
<td>Notify, at least 60 days prior to the public hearing, any city or county within which the supplier provides water that the urban water supplier will be reviewing the plan and considering amendments or changes to the plan.</td>
<td>Plan Adoption, Submittal, and Implementation</td>
<td>Section 10.2.1</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10621(d)</td>
<td>Each urban water supplier shall update and submit its 2015 plan to the department by July 1, 2016.</td>
<td>Plan Adoption, Submittal, and Implementation</td>
<td>Sections 10.3.1 and 10.4</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Plan Adoption, Submittal, and Implementation</td>
<td>Section</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>10635(b)</td>
<td>Provide supporting documentation that Water Shortage Contingency Plan has been, or will be, provided to any city or county within which it provides water, no later than 60 days after the submission of the plan to DWR.</td>
<td></td>
<td>Section 10.4.4</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10642</td>
<td>Provide supporting documentation that the urban water supplier made the plan available for public inspection, published notice of the public hearing, and held a public hearing about the plan.</td>
<td></td>
<td>Sections 10.2.2, 10.3, and 10.5</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10642</td>
<td>The water supplier is to provide the time and place of the hearing to any city or county within which the supplier provides water.</td>
<td></td>
<td>Sections 10.2.1</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10642</td>
<td>Provide supporting documentation that the plan has been adopted as prepared or modified.</td>
<td></td>
<td>Section 10.3.1</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10644(a)</td>
<td>Provide supporting documentation that the urban water supplier has submitted this UWMP to the California State Library.</td>
<td></td>
<td>Section 10.4.3</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10644(a)(1)</td>
<td>Provide supporting documentation that the urban water supplier has submitted this UWMP to any city or county within which the supplier provides water no later than 30 days after adoption.</td>
<td></td>
<td>Section 10.4.4</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10644(a)(2)</td>
<td>The plan, or amendments to the plan, submitted to the department shall be submitted electronically.</td>
<td></td>
<td>Sections 10.4.1 and 10.4.2</td>
<td>Section 1.6</td>
</tr>
<tr>
<td>10645</td>
<td>Provide supporting documentation that, not later than 30 days after filing a copy of its plan with the department, the supplier has or will make the plan available for public review during normal business hours.</td>
<td></td>
<td>Section 10.5</td>
<td>Section 1.6</td>
</tr>
</tbody>
</table>
Appendix N

Water Audit Summary
WATER SUPPLIED

<table>
<thead>
<tr>
<th>Description</th>
<th>Pct</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume from own sources</td>
<td>8</td>
<td>2,203.610</td>
</tr>
<tr>
<td>Water imported</td>
<td>8</td>
<td>1,746.310</td>
</tr>
<tr>
<td>Water exported</td>
<td>8</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Total WATER SUPPLIED: 3,949.920 acre-ft/yr

AUTHORIZED CONSUMPTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Pct</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billed metered</td>
<td>7</td>
<td>3,728.190</td>
</tr>
<tr>
<td>Billed unmetered</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>Unbilled metered</td>
<td>10</td>
<td>1,540</td>
</tr>
<tr>
<td>Unbilled unmetered</td>
<td>7</td>
<td>49.374</td>
</tr>
</tbody>
</table>

Total AUTHORIZED CONSUMPTION: 3,779.104 acre-ft/yr

WATER LOSSES (Water Supplied - Authorized Consumption)

<table>
<thead>
<tr>
<th>Description</th>
<th>Pct</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Losses</td>
<td>7</td>
<td>170.816</td>
</tr>
</tbody>
</table>

Total WATER LOSSES: 170.816 acre-ft/yr

NON-REVENUE WATER

NON-REVENUE WATER: 221.730 acre-ft/yr

SYSTEM DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of active service connections</td>
<td>4,492</td>
</tr>
<tr>
<td>Service connection density</td>
<td>51 conn./mile main</td>
</tr>
</tbody>
</table>

COST DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total annual cost</td>
<td>$5,858,310</td>
</tr>
<tr>
<td>Customer retail unit cost</td>
<td>$2.61</td>
</tr>
<tr>
<td>Variable production cost</td>
<td>$312.00</td>
</tr>
</tbody>
</table>

WATER AUDIT DATA VALIDITY SCORE

Score: 83 out of 100

PRIORITY AREAS FOR ATTENTION

1. Volume from own sources
2. Water imported
3. Billed metered
Appendix O

Additional Analyses of Multiple Dry Water-Years Supply and Demand
Table 7-4 Retail: Multiple Dry Years Supply and Demand Comparison

<table>
<thead>
<tr>
<th>Year</th>
<th>Supply</th>
<th>Demand</th>
<th>Difference</th>
<th>Carryover formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>2107</td>
<td>1948</td>
<td>159</td>
<td>614</td>
</tr>
<tr>
<td>2025</td>
<td>3280</td>
<td>2813</td>
<td>467</td>
<td>3280</td>
</tr>
<tr>
<td>2030</td>
<td>4428</td>
<td>3810</td>
<td>618</td>
<td>4428</td>
</tr>
<tr>
<td>2035</td>
<td>5672</td>
<td>5019</td>
<td>653</td>
<td>5672</td>
</tr>
<tr>
<td>2040</td>
<td>6916</td>
<td>6561</td>
<td>355</td>
<td>6916</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. Supply represents range of 1,100 to 2,800 AFY local groundwater, 1,970 AFY Cachuma Project water and CP carryover water, and 682 AFY SWP water (31% as per DWR Reliability Report, 2014) and SWP carryover water.
Table 7-4: Multi-Year Supply and Demand Comparison

<table>
<thead>
<tr>
<th>Year</th>
<th>Supply (AFY)</th>
<th>Demand (AFY)</th>
<th>Difference (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year</td>
<td>4,153</td>
<td>6,140</td>
<td>1,988</td>
</tr>
<tr>
<td>Second year</td>
<td>6,140</td>
<td>4,787</td>
<td>1,353</td>
</tr>
<tr>
<td>Third year</td>
<td>887</td>
<td>45%</td>
<td>312</td>
</tr>
<tr>
<td>Fourth year</td>
<td>0</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Fifth year (optional)</td>
<td>Supplies totals</td>
<td>Demand totals</td>
<td>Difference</td>
</tr>
<tr>
<td>Sixth year (optional)</td>
<td>Supplies totals</td>
<td>Demand totals</td>
<td>Difference</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. Supply represents range of 1,100 to 2,800 AFY local groundwater, 1,970 AFY Cachuma Project water and CP carryover water, and 682 AFY SWP water (31% as per DWR Reliability Report, 2014) and SWP carryover water.

Carryover Formula

Cachuma carryover (Year + 1) = Demand - GW - ID#1 - Cachuma carryover (Y) - SWP (carryover) - Part of (Cachuma (new) and / or SWP (new))

Carryover Calculation

<table>
<thead>
<tr>
<th>Year</th>
<th>Cachuma (new)</th>
<th>Cachuma (carryover)</th>
<th>SWP (new)</th>
<th>SWP (carryover)</th>
<th>ID#1</th>
<th>GW</th>
<th>TOTAL</th>
<th>Carryover formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>4,153 (actual)</td>
<td>682 (actual)</td>
<td>250</td>
<td>1,400</td>
<td>6,151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>70% (actual) = 4,787 (Demand) - 1,100 (GW) - 125 (ID#1) - 682 (Cachuma carryover) - 402 (SWP carryover) - 400 (SWP new) - 664 (Cachuma new)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>45% = 4,454 (Demand) - 1,200 (GW) - 125 (ID#1) - 671 (Cachuma carryover) - 402 (SWP carryover) - 856 (Cachuma new)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>0 = 3,539 (Demand) - 2,000 (GW) - 125 (ID#1) - 671 (Cachuma carryover) - 856 (Cachuma new)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>0 = 3,795 (Demand) - 2,800 (GW) - 125 (ID#1) - 856 (Cachuma carryover) - 856 (Cachuma new)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 7-4 Retail: Multiple Dry Years Supply and Demand Comparison</td>
<td>2020</td>
<td>2025</td>
<td>2030</td>
<td>2035</td>
<td>2040 (Opt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>6,151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>4,177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>1,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>6,126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>4,804</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>1,322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>4,936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>4,496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>3,669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>3,550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth year (optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixth year (optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cachuma carryover (Year + 1) = Demand - GW - ID#1 - Cachuma carryover (Y) - SWP (carryover) - Part of (Cachuma (new) and / or SWP (new))

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040 (Opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70% (actual)</td>
<td>1970</td>
<td>1292</td>
<td>682</td>
<td>402</td>
<td>280</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70% (actual)</td>
<td>1970</td>
<td>1292</td>
<td>682</td>
<td>402</td>
<td>280</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70% (actual)</td>
<td>1970</td>
<td>1292</td>
<td>682</td>
<td>402</td>
<td>280</td>
</tr>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>887</td>
<td>640</td>
<td>682</td>
<td>402</td>
<td>125</td>
<td>2200</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45%</td>
<td>687</td>
<td>682</td>
<td>402</td>
<td>125</td>
<td>2200</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45%</td>
<td>687</td>
<td>682</td>
<td>402</td>
<td>125</td>
<td>2200</td>
</tr>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>187</td>
<td>682</td>
<td>0</td>
<td>0</td>
<td>2800</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>187</td>
<td>682</td>
<td>0</td>
<td>0</td>
<td>2800</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>187</td>
<td>682</td>
<td>0</td>
<td>0</td>
<td>2800</td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. Supply represents range of 1,100 to 2,800 AFY local groundwater, 1,970 AFY Cachuma Project water and CP carryover water, and 682 AFY SWP water (31% as per SWR Reliability Report, 2014) and SWP carryover water.
Table 7-4 Retail: Multiple Dry Years Supply and Demand Comparison

<table>
<thead>
<tr>
<th>Year</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040 (Opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>6,151</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>4,192</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>1,959</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>6,211</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>4,821</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>1,390</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>5,004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>4,485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td>3,721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td>3,563</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixth year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: CVWD, 2016. Supply represents range of 1,100 to 2,800 AFY local groundwater, 1,970 AFY Cachuma Project water and CP carryover water, and 692 AFY SWP water (31% as per SWR Reliability Report, 2014) and SWP carryover water.
<table>
<thead>
<tr>
<th>Table 7-4 Retail: Multiple Dry Years Supply and Demand Comparison</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040 (Opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year Supply totals</td>
<td>6,151</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First year Demand totals</td>
<td>4,205</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First year Difference</td>
<td>1,946</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second year Supply totals</td>
<td>6,298</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second year Demand totals</td>
<td>4,836</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second year Difference</td>
<td>1,462</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third year Supply totals</td>
<td>5,176</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third year Demand totals</td>
<td>4,499</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third year Difference</td>
<td>676</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth year Supply totals</td>
<td>3,879</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth year Demand totals</td>
<td>3,574</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth year Difference</td>
<td>305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth year (optional) Supply totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth year (optional) Demand totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth year (optional) Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixth year (optional) Supply totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixth year (optional) Demand totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixth year (optional) Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>